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Introduction 
 
With the advent of Ultra High Definition television and the UHD Alliance1 specification 
for televisions, displays are taking a substantial step forward compared to the standards 
developers have been used to for the past two decades. While this is a specification for 
televisions, the technologies involved will ultimately impact many classes of displays. 
This shift in display standards presents substantial challenges for anyone concerned 
about the quality of images they display. The audience for this paper is any graphics 
programmer interested in being ready for this transition, but in particular it focuses on 
challenges tied to game development. 
 
Microsoft and Hewlett-Packard created the sRGB standard in 1996. This standard 
allowed reasonably faithful representation of images on most computers. In many ways, 
it was standardizing what was already in use, as the standard conforms to what was 
implemented in many CRT displays at the time. The standard not only specifies the 
‘gamma’ function most graphics programmers think of, but it also specifies the 
chromaticities of the red, green, and blue color primaries as well as the white point and 
the maximum luminance. Similarly, the rec.709 specification describes these properties 
for HDTVs. It differs somewhat in that it has a dimmer expected viewing environment. 
(Viewing environments impact the perception of properties of images, such as contrast, 
resulting in modified gamma correction curve, etc) 
 
The new UHD Alliance specification brings about new versions of components that 
defined the sRGB space graphics programmers have been living in for two decades. 
The specification has a new set of color primaries known as BT.2020 or Rec.2020. It 
has a new maximum luminance that is as much as 125x (10000 nits) the one specified 
for sRGB, and finally, it also has a new non-linear encoding function known as the 
Perceptual Quantizer (PQ) or SMPTE 2084.  
 
How is it better? 
 
The single most important question with any new technology is always, “Why?” The 
changes with the new display standards allow for the creation of much more realistic 
and engaging images. The two dimensions of improvement are often thought of as 
wider gamut and higher dynamic range. Higher dynamic range is easy to understand as 
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 UHD Alliance is an industry group setting standards for the quality of Ultra HD televisions. 

(http://www.uhdalliance.org/) The standards for encoding and transmission are done by other bodies, such as the 
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games have been rendering to a higher dynamic range and tone mapping down to 
standard dynamic range (SDR) for many years. Wide gamut is a bit more nuanced. It 
refers to the intensity of the hues that can be generated. The gamut supported by sRGB 
cannot represent many of the colors experienced in daily life.   

 

 
Figure 1 - Gamuts of items found in nature (From ITU-R BT.2246-5) 

 

Figure 1 visualizes real examples of how objects we see in real life need a wider gamut than 

what prior specifications for displays supported. The inner triangle represents the limit of colors 

reproducible with prior display standards, and the larger triangle is the extent of what can be 

handled by the color space used in the new UHD standards. 

 
Display Advancements  
 
A fair question to ask might be why displays are taking this sudden jump forward. The 
simplest answer might be a convergence of technology. For the past two decades, 
displays have mostly improved in size and weight (CRT to LCD) with some 
improvements in brightness and resolution. Now, displays are improving in other 
dimensions such as purity of colors, contrast, and brightness. These enhanced 
capabilities go well beyond the present standards for displays. 
 

Background 
 
Colors are such a central part of computer graphics that we often forget how complex 
they really are. This section serves as a reminder of many things we forget, and it 
attempts to provide a somewhat more rigorous definition of terms and concepts we work 
with daily. (What is a color space? What is sRGB?) You don’t need to know and 
understand all this information to take advantage of new display technology, but it is 
intended to help understand the directions recommended later. As entire books and 
theses can and have been written on the topics here, this is not intended as a thorough 
discussion, but as a practical overview and departure point for future study if desired.   
 
Human Visual System  
 



Given that the central goal of the creation of any image in computer graphics is for it to 
be seen by humans, a natural place to start describing information related to color is the 
human visual system. As we all know, real-time computer graphics has a giant 
component of approximation to it. Understanding a bit about vision allows us to make 
the right tradeoffs when attempting to generate images to take advantage of the new 
displays. 
 
As most everyone involved in computer graphics knows, humans see in what is known 
as trichromatic vision, unless they are colorblind. This is why displays using the three 
color framework of RGB can produce what appear to be convincing color images. In 
reality, the cells responsible for color vision (cones) are fairly broadband in their 
sensitivities. Colors that roughly equate to what we’d call red, green, and blue occupy 
the peak sensitivities of the three types of cones which are typically referred to as long, 
medium, and short (LMS) corresponding to the wavelengths of light they sense. Figure 
2 shows how the sensitivities of the cones vary across wavelengths for the average 
human. Because color perception is based on a linear combination of these signals, 
colors can be mathematically represented as a linear combination of (at least) three 
basis vectors. Every such combination doesn’t work for stimulating the eye, as the 
colors chosen need to offer isolation with respect to the three cones, but any reasonable 
combination can be used as a representation. 
 

 
Figure 2 – Cone Responses 2 

 
The range of sensitivities of the cones leads to the set of colors which humans can 
perceive. This is typically referred to as the visual locus. The visual locus is often 
displayed in a chromaticity diagram where the colors are displayed with a constant level 
of brightness but varying hue and saturation. Figure 3 shows such a diagram in the 
most common representation. These chromaticity diagrams generally take on a 
horseshoe-like shape where the curved boundary of the horseshoe equates to 
spectrally pure colors (a single wavelength of light, like a laser). Anything outside this 
curve is termed an imaginary color, as it can’t be physically created. The straight region 
at the end of the horseshoe is often called the “line of purples”. These are colors 
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 "Cones SMJ2 E" by Vanessaezekowitz at en.wikipedia. Licensed under CC BY-SA 3.0 via Commons - 
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perceived primarily as a combination of L and S cones. Anything outside this line may 
be physically realizable, but it can’t be perceived by humans. 
 

 
Figure 3 – Chromaticity diagram in xyY color space 

 
While absolute responses, like the spectral sensitivities of the cones are important to 
describing human vision, vision is heavily impacted by processing and perceptual 
factors. As it turns out, the brain doesn’t really receive a bunch of LMS signals. Instead, 
filtering happens in cells at the back of the eye that produces a set of signals that 
roughly correspond to luminance, red-green opponency3, and yellow-blue opponency. 
Because color information is broken into opponent signals, we don’t perceive reddish 
greens or yellowish blues. Also, these color opponency signals are perceived at a lower 
resolution than the luminance signal, allowing common types of lossy image 
compression, like JPEG (YCbCr with chroma subsampling). 
 
The luminance signal perceived by the human visual system is capable of adapting to 
conditions that exceed 1,000,000,000:1 range. (where sunlight can be over one million 
times brighter than moonlight, and starlight can be over one thousand times dimmer 
than moonlight) While we are capable of experiencing this enormous range, it isn’t 
possible to experience it simultaneously. It requires adaptation that cannot occur 
instantaneously. This is why headlights are blindingly bright at night, but not during the 
day. Within a set level of adaptation humans can discern roughly six orders of 
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 Opponency is value describing some weighted difference between two signals. Red-green opponency is simply a 

differential signal between the L and M cones giving the impression of redness or greenness.  



magnitude difference in luminance. (the monochromatic rods active at low luminance 
are being ignored here) Anything outside these levels will saturate. Further, the 
response curves are highly non-linear. They take on a sigmoidal (S-curve) shape in the 
log domain, which means that our perception of brightness is non-linear, and that we 
have a mid-tone range of roughly two to four orders of magnitude where we are most 
sensitive. 
 
As those familiar with photography may know, the non-linearity of this response curve 
leads to the definition of what is commonly referred to as middle-gray. Middle gray is 
generally taken to be an 18% reflective gray. As the word middle implies, it is generally 
perceived as roughly the 50% level of perceived brightness in a scene. This value is 
commonly used for setting a base level for exposure on a scene, and it is no different in 
the recommendations later in this paper. 
 
The non-linear fashion in which we perceive the intensity of luminance also leads to 
interesting implications in the representation of color data. Steps in luminance are often 
correlated against a metric known as Just Notable Difference (JND). A step in 
luminance that matches the JND for a given level of luminance will be the smallest 
amount where a viewer can discriminate a change in brightness. To avoid banding in an 
image, the steps between representable values need to be at or below the JND 
threshold. There is a function known as the “Barten Ramp” that describes the location of 
JND across a range of luminance. This is used to determine the number of bits 
necessary to represent images with different encodings across different ranges of 
luminance. It is the reason that the sRGB encoding curve is enough with 8 bits at a 
range of 100-200 nits, but that it isn’t enough when pushing to something like the 1000 
nits of an HDR display. 
 
Finally, perception plays another very important role in how we perceive color. In 
computer graphics, we generally treat white as being the color where red, green, and 
blue are at full intensity. In real life, the color perceived as white is tied to the 
environment. This is because we adapt to the present illumination environment, and it is 
where the concepts of cool and warm whites come from as well as what is termed the 
white point. (White point is the color that is presently perceived as white, often given in 
chromaticity coordinates or correlated color temperature.) Taking this into account can 
lead to producing more realistic images, as the virtual environment being portrayed 
typically has different lighting than the one in which the user is sitting. For those familiar 
with photography, this simply corresponds to the concept of white balance. The internet 
meme of white and gold versus black and blue dress is an excellent example of shifted 
perception. 
 



 
 

 
Figure 4 - Well known example of color perception being tied to the viewing environment. 

 
The wide range of visible colors and luminance levels should provide a good motivation 
for why advances in display are important. While it isn’t necessary to apply a complete 
model of the visual system to produce a good image for an HDR display, it is useful to 
have some understanding of the concepts when setting up the environment and display 
pipeline. 
 
Color Spaces 
 
Color spaces are one of those things that most graphics programmers understand, but 
not in a fully rigorous manner. It simply hasn’t been all that necessary, as all day-to-day 
work for the past couple decades has implicitly been tied to the sRGB color space. (or 
the highly similar rec.709) Sure, we’ve thought about sRGB, but mostly as this funky 
gamma curve that prevents banding. In reality, a color space generally consists of three 
things: a set of primaries, an encoding, and a white point. Color primaries for use in 
computer graphics are almost always red, green, and blue. However, there is still an 
important question of which shade of each. The encoding covers things like floating 
point versus normalized integer, but also items like non-linear transforms such as the 
sRGB function or similar gamma correction functions. Finally, a color space generally 
specifies an assumed white point. This allows the correction of the color balance under 
different viewing conditions. (as you might do by changing the color temperature setting 
on your monitor) 
 
XYZ color space and derivatives 
 
Since not all color spaces can represent all visible colors, it is helpful to use a reference 
space that can to describe all the others. The International Commission on Illumination 
(CIE from the French Commission internationale de l’eclairage) did this in 1931 by 
defining the XYZ color space. The color primaries X, Y, and Z are imaginary, and 
therefore much of the space represents colors that don’t exist. The primaries are 
defined so that all real colors are within the positive quadrant of the space, and Y 
corresponds to a signal that humans interpret as luminance. The XYZ space has a 
linear encoding, and it is often represented with floating point values. These properties 
make XYZ a great space to use as a central reference when doing conversions and 
diagrams, but a relatively poor one for rendering and storage. Derived from XYZ is a 



projected space xyY used to describe the chromaticity (hue, saturation, etc) decoupled 
from the luminance. The chromaticity coordinates in this space are simply the X and Y 
values divided by the sum of the X, Y, and Z channels. This yields the space used by 
the horseshoe shaped diagram shown in Figure 3. 
 
 
Color Gamut and Volume 
 
Every color space implicitly defines a gamut or volume containing the represented 
colors. When the color space encoding allows for negative values and essentially 
unlimited ranges, like floating point, the volume is effectively infinite. However, only the 
region where all components are >=0 is really useful for rendering operations. While we 
often think of the volume as an RGB color cube, it is often more useful to think of it as 
polyhedron in a space such as XYZ.  
 

 
Figure 5 - Visualization of color volume supported by a particular monitor. (Image from AnandTech 

http://www.anandtech.com/show/3728/sceptre-x270w-1080p-review-value-27-that-delivers/3 ) 

 
Visualizing color volumes in this way demonstrates how peak luminance is only 
available at the white point, and saturated colors offer a much lower maximum 
luminance. A display with 100 nit (cd/m^2) luminance will only have a pure blue with 15 
nit luminance. 
 
When considering real-time graphics, I personally find it more useful to segment the 
chromaticity and luminance. When I think of wider gamuts, I primarily think of more 
saturated hues from richer chromaticities. When I think of a higher range of luminance, I 
think of higher dynamic range. As a result, I will typically use that short-hand, as for 
practical purposes the two are very disconnected in game development and real-time 
graphics in general. 



 
 

 
It is important to understand that there are many ways of measuring the color volume or 
gamut of chromaticities. Most of the time, this document uses the fairly common CIE 
1931 xyY diagram presented previously. There has been concern that it doesn’t 
correspond that well to the perceptual sensitivities in human vision, so there is another 
diagram based on the CIELUV color space that was created with the intent of being 
more perceptually linear4. It greatly reduces the portion of the visual locus dedicated to 
green and cyan. One often quoted metric for how well a color space represents our 
experiences is via Pointer’s Gamut5. Pointer’s Gamut is a collection of measured 
chromaticities from diffuse reflections in the real world. It is intended to cover the space 
of colors we see on a daily basis. It is important to remember that it only covers diffuse 
interactions, so representing all of Pointer’s Gamut is not a guarantee that every color 
can be represented. Pointer’s Gamut is visualized in comparison to some well-known 
color spaces in Figure 6. 
 

 
Figure 6 – Gamuts of some common color spaces along with Pointer’s Gamut. 

 
RGB Color Spaces 
 
While all RGB color spaces have primaries that can generally be described as red, 
green, and blue, they differ in the exact definition of these color primaries. They also 
may specify different encodings (like sRGB), different white points, and different max 
intensities. The following sections list color spaces you may already be aware of, and a 
few that you should soon familiarize yourself with. 
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 Please see the discussion in the section on CIELUV for some details on how there is still disagreement over what 

the most perceptually uniform space is. 
5
 Pointer’s Gamut comes  from “The Gamut of Real Surface Colors” by M. R. Pointer 



 
sRGB 
 
This is the color space anyone doing real-time rendering, such as game development, is 
likely intimately familiar with even if they aren’t aware of it. sRGB is the space our 
content is authored and displayed in today, because it is the standard that monitors are 
generally built toward. As can be seen in the diagram below, it occupies a relatively 
small portion of the visual locus. This limitation is governed by the purity of the 
primaries. Since sRGB doesn’t allow negative values to be represented, nothing can be 
more saturated than the color primaries, restricting the colors that can be represented.  
 

 
Figure 7 - Chromaticity diagram of sRGB color space. 

 
sRGB covers only 33% of chromaticities in the visual locus, and only 69% of Pointer’s 
gamut. In addition, the standard limits maximum luminance to only 80 nits. This greatly 
restricts the portion of the real world that can be faithfully represented in this color 
space. 
 
sRGB’s white point is a standardized one known as D65. (As with many things color it 
was a standard set by CIE) D65 corresponds to the white perceived at noon under an 
overcast sky. This also equates to the correlated color temperature of roughly 6500K. 
(Color emitted by blackbody radiation at 6500K6) 
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 Actually not quite 6500K, there was a small alteration to the constants in Plank’s Law after things were defined, 

such that it is actually now 6504K. 



 
 

As a historical note, sRGB was developed by Microsoft and HP back in the mid 1990’s 
to standardize the display and printing of color for PCs. It has evolved into a ubiquitous 
standard on the internet. 
 
In practice, many monitors that support sRGB as their standard actually do exceed the 
standard color space. Typically, this is in the realm of luminance, with 200 or even 300 
nits being common. In practice, the higher luminance gets used to adjust for use in 
brighter environments, with most users having their monitor set nowhere near maximum 
brightness. The monitors still only deliver at best 1000:1 static contrast ratios as 
backlight leaking and reflections of ambient light lead to black pixels really being 
brighter than 0.1 nit. 
 
Rec.709 
 
As mentioned previously, Rec.709 is the specification for HDTV color. For the purposes 
of game development, it is very similar to sRGB. It shares the same color primaries and 
thus it’s gamut of chromaticities is identical. It does have a somewhat different 
encoding, partially due to the expectation of a different viewing environment. TV’s are 
expected to be viewed in a dimmer environment than computer monitors, altering the 
perception of contrast. Because of this, it specifies a different gamma function. 
 
Adobe RGB 1998 
 
Another RGB color space many game developers may be familiar with is Adobe RGB. 
(It is important to note that I am referring to the one standardized in 1998 as there is a 
newer wide-gamut Adobe RGB also) It is something that you may have encountered via 
a high-end monitor, photography, or Photoshop. This color space has a substantially 
more saturated green, allowing the representation of many additional printable colors in 
the green and cyan regions. As this space has a somewhat murky history, you can 
sometimes find varying definitions. (D50 or D65 white point) In general, it matches 
sRGB’s red and blue primaries, but has a richer green. 
 



 
Figure 8 – Chromaticity diagram of Adobe RGB 1998 

 
The wider gamut supported by Adobe RGB allows for 45% coverage of the visual locus 
and 86% coverage of Pointer’s gamut. Interestingly, Adobe RGB appears to be a bit of 
a historical accident7 resulting in some conflicting definitions of the space. 
 
DCI-p3 
 
DCI-p3 is a color space standardized for digital film, with DCI standing for Digital 
Cinema Initiative. It shares the same blue as sRGB and Adobe RGB, but it has a much 
richer (monochromatic even) red. The green is also richer than sRGB, and while it is 
more saturated than the one found in Adobe RGB, it is yellower. It is also notable that 
the white point in this color space isn’t the D65 seen in many others, but instead D60. 
(Often referred to as a “greenish” white) The result is a gamut that covers roughly 45% 
of visible colors and 87% of Pointer’s gamut.  
 

                                                 
7 http://www.realtimerendering.com/blog/2011-color-and-imaging-conference-part-vi-
special-session/ 
 

http://www.realtimerendering.com/blog/2011-color-and-imaging-conference-part-vi-special-session/
http://www.realtimerendering.com/blog/2011-color-and-imaging-conference-part-vi-special-session/


 
 

 
Figure 9 – Chromaticity diagram of DCI-P3 color space. 

 
DCI-p3 is of particular interest in this document, due to challenges of implementability. 
While wide-gamut color specifications for UHD specify an even wider color gamut 
(Rec.2020), DCI-p3 is closer to what we as developers can expect as the supported 
gamut in first-generation displays. As we’ll discuss later, targeting realizable color 
gamuts can help ensure that your content displays as you desire it to. 
 
BT.2020 / Rec.2020 
 
BT.2020 is the color space defined to be used for UHD displays. As can be seen in the 
diagram below it is based on completely monochromatic red, green, and blue primaries. 
This produces a very large color gamut which covers 63% of visible chromaticities and 
99% of Pointer’s gamut. 
 



 
Figure 10 – Chromaticity diagram for BT. 2020 color space.  

 
scRGB 
 
scRGB is a color space that was introduced by Microsoft with Windows Vista. It offers 
an expanded gamut while maintaining compatibility with sRGB primaries. The color 
space uses a linear encoding with fixed point that permits a range of [-0.5,7.5]. The key 
bit is that all colors in the [0,1] range match sRGB colors exactly. 
 
While scRGB is technically only defined for fixed point encodings, one can easily 
imagine that the same concept extends to floating point encodings as well. Naturally, 
the range restrictions are lifted under such a scenario allowing the representation of a 
very wide gamut and very high dynamic range. As with true scRGB, an fp16 floating 
point representation has been available since Windows Vista. This color space is 
extremely useful, because it is defined such that it can be easily composited with other 
desktop elements that are authored in straight sRGB.  
 
As floating point isn’t officially listed in the scRGB standard, it isn’t technically scRGB. 
However, it appears likely that there will be an amendment, extension, etc to cover this 
in the future, so for the purposes of this document we’ll just use the scRGB term for 
floating point data encoded in this manner for simplicity. 
 
Converting Between Spaces 
 



 
 

If you weren’t already aware, converting between these different RGB color spaces is 
predominantly done via a simple linear transform. (once colors are in a linear 
representation) The standard way of describing the transforms is via the XYZ space as 
an intermediary. (sRGB -> XYZ -> BT. 2020) Naturally, the 3x3 matrices representing 
transforms to and from XYZ space get concatenated in any optimized scenario. 
 
The reason you want to transform from space to space rather than simply mapping 
(1,0,0) in sRGB to (1,0,0) in BT. 2020 is that your colors will shift, and artists may 
wonder what has happened to their work. (“Why does the character look like he has a 
sunburn?”) The gamut mapping section later in this paper offers some perspective on 
pros and cons of remapping rather than transforming colors. 
 
In addition to simply changing the color primaries, it may be necessary to adjust the 
white point of the image as well. The standard way of doing this is through a Chromatic 
Adaptation Transform (CAT). The common CAT solutions are the Bradford or Von Kries 
transforms. These convert the colors to an LMS color space, then scale by destination 
white / source white (also in LMS space), and finally convert back from LMS space. As 
the transform to LMS space in both Bradford and Von Kries is simply a 3x3 matrix 
multiply, the entire CAT can be collapsed into a single 3x3 multiply, just like the 
transform of primaries. 
 
The final complete color transform generally looks like the pseudocode below: 
 
RGB = ToLinear( inRGB) // remove non-linear encodings, like 

gamma 

XYZ = mult( RGB_2_XYZ_mat, RGB) 

LMS = mult( XYZ_2_LMS_mat, XYZ) 

LMS = LMS * ( outWhite_LMS / inWhite_LMS) 

XYZ = mult( LMS_2_XYZ_mat, LMS) 

RGB = mult( XYZ_2_RGB_mat, XYZ) 

outRGB = FromLinear( RGB) 

 
It should be noted that the only steps not representable as 3x3 matrix multiplies are the 
decoding/encoding from/to non-linear representations. As a result, the optimized 
solution will typically be collapse the transformations into a single matrix multiply. 
 
Other Color Spaces 
 
While RGB color spaces are great for rendering and generally representing image data, 
other color spaces are likely familiar for other purposes as well. 
 
CIELUV and CIELAB 
 
To deal with a perceived shortcoming of the xyY color space used for diagramming 
chromaticities, CIE standardized a pair of additional color spaces in the 1970’s. They 
both attempt to map colors more linearly with respect to human perception, so that a 



measure of distance in the space more closely matches the difference perceived by a 
viewer. The fact that two different ones exist is largely a historical accident of different 
industries addressing the same issue. Some controversy exists about whether CIELUV 
is truly a better perceptual space as pointed out by a paper by Goldstien in 20128 and a 
paper by Masaoka in 20159 both suggest that while not ideal the original xy diagrams 
are better particularly when wide gamuts are considered.  
 
These spaces are noted here primarily to familiarize you with the alternate form of the 
chromaticity diagram, and that they may be useful when comparing colors or performing 
a transform that tries to minimize color shift. It should be noted that these spaces do not 
show hue linearity. As a result, interpolating colors in a straight line toward white will 
result in a perceived shift in hues. 
 

 
 
HSV / HSL 
 
HSV (Hue, Saturation, and Value) or HSL (Hue, Saturation, and Lightness) are color 
spaces that artists might use in the production of some assets. They can be highly 
intuitive to use. It is expected that if you need to use something like HSV with HDR 
images that you will need to adjust/expand the representable range of the V parameter. 
 
IPT 
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IPT is yet another color space invented to improve the description of differences in 
color. Its primary claim to fame is that it is designed to be linear with respect to 
perceived hues. This means that interpolating a set color toward gray should give the 
impression of a less saturated version of the same hue. 
 
IPT is primarily mentioned in the paper because it can provide a convenient logical 
space for defining or performing some number of color grading or gamut mapping 
operations.  
 
Properties of colors 
 
Many terms are used in the everyday description of colors. In the literature related to 
color science, they often have very specific meanings. It is useful to have a quick 
definition of these terms, as this document tries to follow the meanings used in the 
literature. It is important to note that these terms are referring to the perceived 
appearance of a color rather than an absolute measurement like RGB, LMS, and XYZ. 
As a result, these are all relative to the viewing conditions. 
 
Hue – Closeness of a stimulus to the stimuli that are described as red, green, yellow, 
and blue. 
 
Lightness – Brightness of a stimulus compared to the brightness of a stimulus that 
appears white. 
 
Brightness – Perceived quantity of light. (non-linear with respect to luminous energy) 
 
Chroma – Colorfulness of a stimulus relative to the brightness of the source.  
 
Colorfulness – Perceived quantity of hue in a stimulus, distance from gray 
 
Saturation – Colorfulness of a stimulus relative to its brightness. 
  
These properties are often used in color appearance models (CAMs) to describe color 
stimuli and attempt to replicate the same perceived color under different environments. 
The definitions used here pulled from the work of Fairchild in the development of the 
CIECAM0210 (a particular standardized CAM). 
 
Scene Referred vs Output Referred 
 
One important concept that a developer venturing into the realm of creating images for 
HDR displays needs to internalize is that of output referred versus scene referred. 
Scene referred simply means that the image is representing light as it was captured by 
the virtual camera. Generally, this would represent the HDR buffer rendered in a game 
prior to tone mapping. In that case, the data typically has a linear encoding. Scene 
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referred images intended for saving to disk (such as captured by a camera) may have 
some sort of non-linear encoding to save bits. Output referred images are images 
representing the luminance values intended to be output by a display. In a game, these 
will be anything after tone mapping. It is important to realize that many 2D graphics, like 
UIs are actually created as output referred as they are crafted in a space specifically for 
the display. The importance of the distinction is that different processing needs to occur 
to generate an output referred image for an SDR display versus an HDR display. 
Finally, the concept of scene referred and output referred impacts operations like 
blending. Just as with sRGB blending the operation should convert to linear first, but it 
also needs to ensure both inputs have the same reference frame (scene or output),  
 
OETF and EOTF 
 
Optical Electric Transfer Function (OETF) or the inverse Electrical Optical Transfer 
Function (EOTF) are generalizations of concepts many graphics programmers already 
know fairly well today. You probably simply call it gamma, because that is roughly what 
it is in an SDR world. The non-linear conversion of bits to luminance values by the 
display is an EOTF. Gamma functions technically only refer to power functions, so 
technically, sRGB isn’t really a ‘gamma’ function, since it has a linear portion. These 
distinctions become important in HDR, because it turns out the gamma-like functions 
are typically inadequate for encoding the higher dynamic range efficiently. (They need 
extra bits to stay below the JND curve) As a result, HDR displays often use an EOTF 
known as the Perceptual Quantizer (PQ) that does a more effective job of representing 
the space. There are other possibilities as well, with one being “Hybrid Log-Gamma”. An 
important corollary of this is that in the past, the gamma function might be tweaked as a 
way of adjusting the contrast on top of what a straight reproduction might be. Such a 
viewing conditions adaptation now needs to be done explicitly further up the pipeline 
prior to the encoding for EOTF. 
 

Where UHD Fits with Gaming 
 
It should be clear to most game developers that richer colors and brighter highlights can 
offer the promise of a more engaging image. Historically, we’d just take the image we’re 
already generating in that [0,1] RGB space and slap it onto a new monitor with extended 
capabilities. As I hope you understand by now, this is not in general a good solution for 
the capabilities UHD brings. First, moving the brightness linearly to an HDR monitor will 
generally lead to an uncomfortable experience. That white UI dialog is going to be like 
shining a flashlight at your user. Second, we have moved forward a lot on image quality 
as an industry. Expectations of quality and reproducibility are much higher. No one 
wants the (virtual) human protagonist spending the whole game with a greenish tinge as 
though he is about to vomit. Finally, the delivered impact of HDR in particular has some 
physical constraints to live within. Making a display brighter takes more power. As a 
result, attempting to constantly drive much or all of a display to full brightness may result 
in overall brightness being restricted by the display. Restricting the extreme brightness 
to the highlights that are truly supposed to be bright will ensure a better use of the 
available range. 



 
 

 
What your game can gain 
 
The first thing to consider when asking “What will I gain?” is how you are compromising 
today. If you are like many developers, you are already generating fairly high-quality 
HDR data, likely through a physically-based rendering pipeline. This wide range of data 
then needs to be compressed via a tone mapper to be displayed on monitors that can 
only handle 2 orders of magnitude in brightness. (3 if all your customers have really 
good displays) The compression here limits how good of an experience you can offer to 
your users. 
 
The restricted range limits highlights to looking much flatter than they would appear in 
real life. Extra dynamic range is required to allow good discrimination between diffuse 
white and true highlights. Additionally, as noted previously, displays can only produce 
their maximum brightness at their white point. For highlights that are distinctly not white, 
the choices on an SDR display are compromising on the saturation or compromising 
further on the brightness. A display with an HDR range allows for highlights that are 
substantially brighter than diffuse white, and it allows fully saturated colors at much 
higher luminance levels. 
 
Further, the need for compression restricts the brightness of mid-tones, as the brightest 
colors get used for highlights. Removing the compression allows for overall brighter 
mid-tones. Brighter images have important perceptual effects that can make the image 
appear better in many ways beyond naive expectations. First, the Hunt Effect states that 
images will appear more colorful as the brightness increases11. This is simulated in the 
image below. The colors all have identical chromaticities, but the luminance level is 
increased. The brighter images are perceived as substantially more saturated. A result 
of this effect is that a HDR image with sRGB chromaticities can appear more richly 
colored than an SDR image with DCI-P3 primaries. Additionally, the Stevens Effect 
states that a brighter image will have more contrast. In addition to the image below, you 
can easily test this effect by looking at the test of a book under bright sun versus looking 
at that same book under the illumination of a dim room. 
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Figure 11 - Hunt Effect, theperceived intensity of colors increase at higher luminance, even though the hues and 

saturation are the same. 

 
Figure 12 - Stevens Effect, perception of contrast increases at greater luminance, and the image looks sharper. 

 
Finally on the dynamic range front, the need in SDR to devote as much range to the 
important mid-tones as possible means that shadows will get crushed toward black. The 
HDR made available in UHD displays allows for maintaining details in the shadowed 
portions of the image. Further, UHD displays offer truer blacks via local dimming. This 
means that in addition to not needing to steal part of the dynamic range from shadows 
to better represent mid-tones, you also gain from deeper black. 
 
On the chromaticity side, we’ve already discussed how wider color gamuts allow the 
display of colors you’d otherwise not be able to create, potentially leading to richer, 
more vibrant, more realistic images. As mentioned in the next section, if replacing your 
content with higher color gamut content is impractical in the short term, there are still 
opportunities to take great advantage of UHD displays, even within the sRGB color 
space. 
 



 
 

A practical path to utilizing UHD in the near term 
 
As with all engineering, game development is an exercise in compromise. The goal in 
supporting UHD class displays isn’t to simply generate content targeted directly to the 
native BT. 2020 color space with a dynamic range that tops out at 1000+ nits. The goal 
is to create a great game that looks fantastic on the majority of displays that your 
customers have (sRGB-based) and to enhance your pipeline to also produce images 
that make good use of these new, better displays. Given the complexity and cost of 
developing content for a game, it is generally impractical to expect UHD and sRGB 
assets, or convert over the art flow to generate most art in these new wider color 
spaces.  
 
In support of these constraints, NVIDIA has developed what we feel is a good starting 
point for the practical adoption of UHD output support for games. It certainly isn’t the 
only possible solution, but we feel it offers a good compromise on the challenges faced. 
Here are the core principles: 
 

 Author content with sRGB primaries as today 
 Render high quality HDR data using physically-based shading 

 Analyze content for dynamic range produced 
 Watch for hacks with luminance levels 

 Perform all rendering operations with respect to the sRGB primaries you use today 
 Postprocess in the scene referred space 

 Motion blur, DoF, etc 
 Apply any color grading to the scene-referred image 
 Tone map with filmic ACES12-derived tonemapper 
 Keep backbuffer in fp16 scRGB 
 Composite sRGB referenced UI as normal 

 
This pipeline will allow you to keep content authoring as you likely have it today, with the 
exception that you will need to pay additional attention to certain aspects of the quality 
of your lighting and effects. Additionally, if you rely heavily on color grading today you 
may have some additional work as scene referred color grading can offer better 
portability than the output referred color grading commonly used today. 
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Figure 13 - Logocal game pipeline for HDR output 

  
sRGB Primaries 
 
Keeping your content authoring in sRGB is probably the biggest item to simplify life for 
games in development today. Artists can continue to use the workflow they already 
have and, studios don’t need to re-equip the entire art staff with new monitors. 
Rendering using the sRGB primaries is directly related to this. sRGB primaries are what 
you render with today. If you were to take your sRGB content you create today and 
convert it into colors described by the BT. 2020 primaries before performing lighting, 
you’d see much different results. This happens because material interactions are 
relative to the color space in which they are defined. The modulation operator we all use 
to compute the interaction between a material and a light source will produce different 
results if you change the primaries. As a game developer, you don’t want your artists 
authoring content to see an object looking brown on their monitor, but the same object 
being green or purple when you run the game on a UHD class display.  
 

 
Figure 14 - Modulating colors has different results when the math is done in different spaces. 

 
The downside for UHD displays of performing all the asset authoring and rendering with 
sRGB primaries is that you may not be able to use the width of the gamut offered by 
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UHD displays. The positive side of this is that you won’t have the problems of 
generating hues that your SDR customers cannot see and the challenges of mapping 
those colors sensibly. It is important to remember that even with the primary limitation 
you will be generating richer colors for UHD displays, because highlights that would 
normally need to desaturate to maintain brightness can maintain their saturation with 
the higher dynamic range. Additionally, the Hunt Effect applies to the mid-tones that can 
now be represented as notably brighter. Even though the chromaticities are the same, 
they may appear just as rich or richer than wide gamut colors displayed at SDR levels. 
 
While this is a great practical step to getting UHD content working, the general 
expectation is that it is an evolutionary step. As displays with wider gamut become more 
widely deployed, we expect shifts to rendering and/or authoring primaries such as DCI. 
These will allow the production of the richer colors we just can’t render today. 
 
Physically-Based Rendering 
 
Physically-based rendering is the general trend in game development today, because it 
helps in the generation of consistent, high-quality images. These properties are also 
useful in generating better HDR outputs. Using physically-based techniques means that 
you are generating plausible levels of illumination, and that the scene-referred data has 
realistic relative magnitudes. This should allow you to generate the strong highlights that 
will take advantage of HDR displays. 
 
While being physically-based is a great start, it isn’t a hard requirement, and it isn’t 
enough to guarantee that you won’t have artifacts. The most common challenge we’ve 
seen is when lighting values cheat. The common case is where proxy geometry exists 
in the scene representing a light source. The emissive value of the geometry can often 
be wildly different from the values used for the light injecting illumination into the scene. 
When you are just looking at this on SDR displays, the problem is often hidden. Once 
you reach a level of “bright enough” the light source is in the highlight region of the tone 
mapper, and it looks as bright as anything else in the scene. However, once you go to 
an HDR display, you now have a much greater capacity to differentiate highlights. It is 
now easy to have the specular reflection be dramatically brighter than the geometry 
representing the light source. This can be quite obvious and make the scene look less 
realistic. (The light source now looks like a white globe instead of an illuminant) Another 
example of this effect rises from skyboxes. In the false-color image below, the light cast 
by the sun is much brighter than the value assigned to the skybox. As a result, the sun 
is blinding in the reflection from the floor, but the sky box looks dim in comparison. 
Similar issues can apply to particle effects as well.  
 



 
Figure 15- Specular highlight is two or more times more luminous than the sun that is supposed to be source of the light. 

(Visualization of scene referred luminance levels in Sun Temple sample from Unreal Engine 4) 

 
Scenes that will utilize HDR well 
 
Naturally, high dynamic range outputs really only look their best when the content that 
they are displaying is truly high dynamic range. A scene can look fantastic with it truly 
having a very large range, especially if you are doing physically based rendering 
correctly. It is important to remember that range isn’t brightness or darkness, it is the 
distance between them. You can have bright or dim images that don’t show a ton of 
range. Outdoor scenes are bright, but when they lack deep shadows or the sun or 
strong specular highlights within the view, they may not have an overly large dynamic 
range. Since HDR isn’t about just turning up brightness, the exposure will still be 
bringing the range to a good viewing level. Similarly, a dimly lit indoor scene where 
everything is diffuse and no lights are directly visible will only show so much dynamic 
range. The best scenes for looking at what HDR provides will be ones that mix dim and 
bright components. (Looking outside from a dim room or cave, bright lights directly in 
the view) All this isn’t to say that you won’t see gains in most scenes, but that for testing 
or demonstration purposes you may want to look for these sorts of environments as 
they are the ones that you can expect to standout from across the room.  
 



 
 

 
Figure 16 - Visualization of luminance of a scene from Infiltrator demo of Unreal Engine 4 

 

These images visualizing the scene referred luminance levels of demos from Unreal Engine 4 

show how fantastic rendering may or may not push the envelope on dynamic range. For all of 

these visualizations, each color step (blue, cyan, green, yellow, red, magenta, white, etc) 

represents a change of one stop (doubling) in luminance. In Figure 16, the Infiltrator demo is 

clearly showing a very large dynamic range, with deep shadows and very bright highlights. In 

Figure 17, the Kite demo is showing much brighter colors but a smaller range. As most people 

would say that Kite offers a better image, it is clear that dynamic range isn’t directly related to 

the beauty of the image. What is notable is that both scenes actually do notably improve when 

displayed on an HDR display, but just for different reasons. Infiltrator gets highlights that pop 

and make you feel as though you are really looking at a light source. Kite gains in that its mid-

tones appear brighter and as a result richer through the Hunt Effect. (Infiltrator has a lot more of 

a gray palette, so it doesn’t improve as much here)  



 
Figure 17 - Visualization of luminance in Kite demo for Unreal Engine 4 

 
Validating your scene 
 
As mentioned above, you need to pay attention to where and when you might be 
cheating to produce the best HDR output you can. A few good tools can go a long way 
here. First, dumping native HDR image data for offline analysis is very helpful. Even if 
you don’t integrate a ton of tools into your engine directly, dumping HDR frames to run 
through an external tool like our HDR image viewer sample can offer lots of insight. 
Second, visualizing the dynamic range of the scene can be extremely useful to identify 
faults in luminance levels even while using SDR monitors. A simple solution is replacing 
the tone mapper with a shader the applies a false color ramp to the function 
log2(luminance / 0.18). This gives you steps in increments of stops away from middle 
gray with 0.0 being middle gray. A color step for every stop or two works great for 
identifying when highlights are brighter than the lights casting them. The colorized 
image also shows you what sort of range exists in the scene. Finally, you may find it 
useful to add a proper histogram tool so you can visualize the distribution of luminance 
values in the scene. The false color technique previously mentioned does provide this 
on an intuitive level, but the hard data can be enlightening as well. (Especially when the 
peak values in a scene occupy a relatively small spot) 
 



 
 

 
Figure 18 - Log luminance visualization of UE4 Sun Temple demo. Cyan is middle gray, blue is two stops darker, green is 

two stops brighter, etc. 

 
Scene-Referred Post Processing 
 
The general concept here is extremely simple, and most games already appear to 
function in this way; however, it bears noting. Our results so far show that performing 
post processing operations, like motion blur, depth of field, etc, are best done prior to 
tone mapping the scene referred image to an output referred image. Performing the 
operations in the scene referred space means that the operation is consistent no matter 
what display we’re targeting. Performing these operations after tone mapping would 
mean that the result of the operation would very much depend on what display was 
being targeted. It is much the same reason you linearize an sRGB texture before 
filtering it. 
 
An argument can be made that bloom effects may want to change somewhat when 
moving to HDR display outputs. It would appear that this may be highly dependent on 
what the bloom is attempting to simulate. We’ve actually had quite good results leaving 
bloom as is, and applying it prior to tone mapping. This case seems to argue for the fact 
that it is modeling a spatial bleeding of overly bright data on the image plane of the 
virtual camera. There is another interpretation where bloom is injecting a glow around 
objects too bright to represent in an effort to make them look bright. In that latter case, 
turning back the bloom may produce the more pleasing effect. As stated, we 
recommend leaving bloom as is for an initial pass, and then later reevaluating it if there 
appears to be an artifact. 
 



ACES-derived Tone Mapper 
 
The tone mapping operator in our recommended pipeline had to meet several 
constraints. Obviously, it needed to offer scalability for different output luminance 
ranges. It needed to work well with the looks game developers are pursuing, and it 
needed to have a fast implementation. We’ve found that the pipeline defined in the 
Academy Color Encoding System13 (ACES) as created by the Academy of Motion 
Pictures is a good fit. As a bonus, it is a standard that appears to have traction in a 
related industry. 
 
Tone mapping in ACES can (unsurprisingly) be described as ‘filmic’. This means that it 
applies a sigmoid-style curve in a logarithmic space to produce the tone mapping. 
Further, it performs the operations mostly independently on the color channels rather 
than operating strictly on luminance like many other operators. This characteristic 
makes the operator naturally desaturate when it reaches the limits of the present 
adaptation level. Highlights gently roll toward white, and shadows gently roll toward 
black. Filmic operators have gotten a lot of traction with game developers over the past 
several years, because they offer a ‘cinematic’ look. Also, as they roughly model the 
behavior of film stock, they are taking over a century of refinement in how to capture 
and present an image that humans find pleasing or realistic.  
 
The full pipeline defined by ACES is more than what a game developer typically needs 
to concern themselves with as it includes items related to cameras and archival storage. 
What we’re most interested in here is the imaging pipeline that specifies how to convert 
a scene-referred image for display across a variety of reference devices. (from 48 nit 
projectors to 4000 nit HDR displays in the present reference implementation) 
 
For us, ACES starts by taking a scene referred image and converting it into the wide-
gamut working space used by ACES. At this point in the process, settings such as 
exposure are applied to get middle-gray to the expected 0.18 level. (Applying exposure 
doesn’t change an image from being scene referred, since exposure is just a linear 
scale.) Prior to the tone mapping portion of the algorithm, ACES specifies that one or 
more “Look Modification Transforms” (LMT) may be applied to produce the intended 
look for the scene. (Please see the color grading section for more) Next, ACES applies 
what it refers to as the “Reference Rendering Transform” (RRT). The RRT contains a 
sigmoid-style curve in a very large range. It can be thought of as a base film operator 
that is independent of the intended display. Next, ACES applies what is called an 
“Output Device Transform” (ODT). The ODT can be thought of as containing the output 
device specific portion of tone mapping. The ODT will contain a stronger sigmoid-style 
mapping to bring the data into the limited range of the intended output. It also handles 
conversion into the output color space, and any encoding necessary. The powerful 
concept here is the segmentation of operations, particularly device independent versus 
device dependent. The goal of the system is to enable adapting to many different 
display environments. 
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To ease the application of the ACES-inspired system to games, we have created an 
ACES pipeline that is parameterized to be able to implement a wide range of the 
reference ACES ODTs as well as additional tweaks to handle cases beyond the 
reference ODTs.  
 
Scene-Referred Color Grading 
 
This section is out of place chronologically with the recommended pipeline, simply 
because our recommendation here is based heavily around the ACES work flow 
described in the last section. As described in the last section, LMTs are the prescribed 
way to apply a specific look to a scene within the ACES pipeline. As opposed to the 
color grading game developers have frequently used in recent years, it is defined to 
happen against scene referred data rather than against output referred data. 
 
Today many game developers use a very simple but powerful pipeline to handle color 
grading. They have a small (often 16^3) 3D LUT, with is indexed by the color after tone 
mapping. Artists are often given a default identity LUT overlaid on an image from the 
game, and then given free rein to modify it with global operations in an editor like 
Photoshop. After many layers of color balancing, curve modification, and hue shifting, 
the transformed LUT is extracted out of the image and used in game. In the worst case, 
all this is done without properly accounting for the non-linear encoding of sRGB. 
 
While the process described above is extremely powerful for an artist, it poses some 
challenges with a flow that needs to contend with HDR. The primary issue is that the 
grading is all being done relative to output referred colors. This means that the grading 
doesn’t map well to the larger range. Obviously, it is possible to just author another 
color grade for a different output space. However, now a developer needs to worry 
about keeping things in sync, and possibly worry about keeping multiple levels of 
grading (500 nits for OLED HDR, 1000 nits LCD HDR, 2000 nit HDR, etc) Assuming 
that the tone map is invertible, it would be possible to map the changes back from the 
SDR space to the HDR space. Unfortunately, tone mappers are never quite fully 
invertible once you get to the final image. (quantization and saturation, particularly in the 
highlight ranges) So, mapping that operator backwards will lead to some degree of 
artifacts or limitations.  
 
Additionally, grading in the output reference space can result in the artist being driven to 
‘fix’ tone mapper short comings. A common potential issue is with luminance only tone 
mappers. Because they are restricted to luminance only, they maintain saturation at all 
levels of luminance. This means that a heavily saturated highlight will actually appear 
dimmer due to the natural restrictions of a display. However, an artist may now be 
tempted to throw some desaturation into those high ranges to make them look brighter. 
Now, you’ve desaturated colors that you could represent well on an HDR display in an 
unnatural manner. 
 
To solve these sorts of issues, ACES specifies using a Look Modification Transform for 
most of what we’d term color grading in games today. The LMT operates on the full 



range data. While it doesn’t have to be, an LMT will typically be a 3D LUT just like we’re 
used to. To compensate for the large range, the LUT needs a “shaper” function to more 
efficiently cover the space. Typically, a log function is a good enough solution for this. 
With log compression, a 32^3 LUT can cover a large range in the scene referred space 
with reasonably good precision. 
 
For simplicity as you start out, a developer may wish to consider integrating a fairly 
restricted range of mathematic operators applied directly to the data. Gain, bias, 
contrast enhancement, and saturation may be enough for a lot of purposes. Further 
transforms, like processing in color opponent spaces like IPT may be useful to adjust 
balance between hues. We have implemented several of these in the HDR image 
viewer sample as an example of simple things that can be done. Additionally, these 
operations can all ultimately be baked out into a simple LUT as described above for final 
deployment.   
Obviously, the solution proposed here cannot replicate everything that an artist might be 
doing today with the common color grading methods. Today, an artist can turn pure 
black to bright red if they really want to. In spite of this, we feel the path outlined is going 
to be a generally good one that will cover the needs and desires of most. It is something 
that seems to have some degree of support in the film industry, and we can do a lot 
worse than emulating a workflow that others with similar challenges utilize. 
 
Practical Implementation 
 
Some game developers might already be shaking their heads about the potential cost of 
the ACES-derived operators discussed above. In reality, even unoptimized versions 
aren’t that expensive on the fairly high-end HW you typically expect to be connected to 
the UHD display of an early adopter. However, that cost isn’t necessary. Instead, the 
same solution described previously for LMT application applies for tone mapping as 
well. The whole process can reasonably be mapped into a 3D LUT, even baking in the 
LMT. This turns the entire color grading and tone mapping pass into the execution of a 
shaper function and a 3D texture fetch. This is the sort of workflow that the movie 
industry has often used, so I think we can be fairly confident that it will generally be 
good enough for our purposes. 
 
It is important to remember that the 3D LUT will need to hold high-precision data, 
preferably fp16. This is to ensure that the outputs have the proper precision. Recalling 
the Barten Ramp mentioned earlier in this paper, fp16 RGBA is the common format that 
GPUs support today which has the full necessary precision.    
 
FP16 scRGB Back Buffer 
 
As many developers might know, Microsoft Windows has supported the display of fp16 
surfaces since Windows Vista. They have always been merely a floating point 
representation of scRGB. So far, this has meant that the desktop compositor or the 
display driver applies the sRGB transform then pushes the bits out to the monitor at 



 
 

whatever precision the display link is running. (While the output to the display may be 
30 or 36 bit RGB, the desktop compositor presently only operates with 24 bit RGB) 
 
With the advent of the UHD display standard, NVIDIA has integrated support to send 
the signal necessary to properly drive these displays. This means signaling the display 
to operate in the expanded color mode, as well as encoding the data over the display 
link correctly. To do this, the display driver needs to be told that the application wishes 
to do so via NVAPI. Additionally, the application creates its display surface as RGBA 
fp16 to ensure enough precision. The application renders the frame out and leaves it in 
the scRGB. (sRGB primaries, linear encoding, with (1,1,1) corresponding to the sRGB 
white level) Finally, the swap chain must be set to fullscreen exclusive, as the desktop 
compositor does not yet understand UHD displays, so the display driver must be in a 
position to handle the data from end-to-end. 
 
The display driver takes the scRGB back buffer, and converts it to the standard 
expected by the display presently connected. In general, this means converting the 
color space from sRGB primaries to BT. 2020 primaries, scaling to an appropriate level, 
and encoding with a mechanism like PQ. Also, possibly performing conversions like 
RGB to YCC if that display connection requires it.  
 
Because the back buffer is floating point, it can still represent the full range of colors in 
the BT. 2020 gamut by using negative values. The brightest possible level in this output 
color space is expected to be 12.5, as this corresponds to 10,000 / 80. 10,000 nits is the 
maximum brightness encoding for the UHD standard, and 80 nits is the standard for 
sRGB brightness, which is mapped to (1,1,1). 
 
It is important to note that the driver isn’t performing tone mapping or gamut mapping. It 
is expecting the output colors to be encoded by the application in a space that is output 
referenced and represents a good approximation of what the display device desires. 
The application will have already tonemapped and applied an appropriate ODT. The 
display driver is just providing a uniform abstraction to multiple different display 
standards. 
 
While this is all relying on the NVIDIA driver and NVAPI today, it is expected that this 
pipeline will port seamlessly to future updates of present operating systems with native 
functions for identifying streams as UHD compliant. As noted, the scRGB is actually a 
standard created by Microsoft.  
 
UHD Metadata 
 
As with any good standard, the standards for UHD signaling are setup for future growth. 
They specify an extremely large color volume of BT. 2020 primaries and maximum 
luminance of 10,000 nits. However practical devices in the immediate future would 
expected to be more along the lines of 1000 nits and approximately DCI primaries. As 
such, the displays are expected to tonemap these full range signals into their 
displayable range. This is obviously a compromise to allow variation in displays. To help 



preserve the intent, the content can also pass along metadata that specifies what range 
it is mastered against. This is providing the display a hint as to how much tonemapping 
it potentially needs to apply. If the display only supports 1000 nits, and the signal can 
top out at 10,000 nits, it may need to reserve a lot of room to express that compressed 
data. However, if the content tells the display that it only wants to use up to 1000 nits, 
then the display can avoid that extra compression needed to support those extreme 
luminance values. 
 
The great bit about games is that they are dynamic content, so they can actually choose 
to adjust a mastering level for their signal unlike pre-authored content like videos. In the 
ideal scenario, the game reads back the metadata, and then selects its mastering level 
to match the display (or provides the user a simple drop down). As it is still somewhat 
early in the lifecycle of UHD firmware, the feedback isn’t necessarily always available. In 
general, generating a 1000 nit or 500 nit and DCI or sRGB primaries makes a good 
approximation that the display can come close to supporting. (The 500 nit level is what 
may likely be appropriate for OLED displays as they generally have lower peak 
luminance)  
 
One important aspect of the metadata is that it is the way to inform the display that your 
signal has any high dynamic range or wide color gamut properties. The sending of this 
metadata is how the display knows to engage the extended capabilities. (Please note 
that with early firmware, it may be necessary to use a control on the display or its 
remote to engage this.) 
 
NVAPI Functions 
 
Since metadata is a critical portion of utilizing UHD display outputs, NVIDIA has created 
a set of NVAPI functions to handle the needed functionality. It is expected that native 
OS functionality will eventually supersede these functions, but until that time and on 
legacy operating systems this is the way to provide the data. 

General Operation 
 
As this isn’t a tutorial on NVAPI, general information on the initialization and similar 
general topics should be obtained from the NVAPI documentation itself. 
 
All functions work based on an NvDisplayId that must be obtained via NVAPI functions 
designed for enumerating connected displays. The SDK sample we’re releasing in 
concert with this paper has some example code doing this. 

Querying Capabilities 
 
Once a display has been identified, it can be queried for whether it supports HDR via 
the NvAPI_Disp_GetHdrCapabilities function, which will fill out a structure describing the 
properties of the display. 
 
typedef enum 



 
 

{ 
    //!< The type of structure used to define the Static Metadata Descriptor block. 
    NV_STATIC_METADATA_TYPE_1 = 0 
}NV_STATIC_METADATA_DESCRIPTOR_ID; 
 
typedef struct _NV_HDR_CAPABILITIES  
{ 
    // Version of this structure 
    NvU32 version; 
  
    // HDMI2.0a UHDA HDR with ST2084 EOTF (CEA861.3). 
    //  Boolean: 0 = not supported, 1 = supported; 
    NvU32 isST2084EotfSupported                 :1; 
 
    // HDMI2.0a traditional HDR gamma (CEA861.3). 
    //  Boolean: 0 = not supported, 1 = supported; 
    NvU32 isTraditionalHdrGammaSupported        :1; 
 
    // Extended Dynamic Range on SDR displays. 
    //  Boolean: 0 = not supported, 1 = supported; 
    NvU32 isEdrSupported                        :1; 
 
    // If set, driver will expand default (=zero) HDR capabilities parameters 
    // contained in display's EDID.  
    // Boolean: 0 = report actual HDR parameters, 1 = expand default HDR parameters; 
    NvU32 driverExpandDefaultHdrParameters      :1; 
    NvU32 reserved                              :28; 
  
    // Static Metadata Descriptor Id (0 for static metadata type 1) 
    NV_STATIC_METADATA_DESCRIPTOR_ID static_metadata_descriptor_id; 
 
    //!< Static Metadata Descriptor Type 1, CEA-861.3, SMPTE ST2086 
    struct 
    { 
        // All elements in this structure are encoded as:  
        //  ([0x0000-0xC350] = [0.0 - 1.0]) 
        // unless noted otherwise 
 
        // x coordinate of color primary 0 (e.g. Red) of the display 
        NvU16    displayPrimary_x0; 
        // y coordinate of color primary 0 (e.g. Red) of the display  
        NvU16    displayPrimary_y0; 
 
        // x coordinate of color primary 1 (e.g. Green) of the display 
        NvU16    displayPrimary_x1; 
        // y coordinate of color primary 1 (e.g. Green) of the display 
        NvU16    displayPrimary_y1;  
 
        // x coordinate of color primary 2 (e.g. Blue) of the display  
        NvU16    displayPrimary_x2; 
        // y coordinate of color primary 2 (e.g. Blue) of the display  
        NvU16    displayPrimary_y2; 
        // x coordinate of white point of the display 
        NvU16    displayWhitePoint_x; 



        // y coordinate of white point of the display 
        NvU16    displayWhitePoint_y;  
  
        // Maximum display luminance = desired max luminance of HDR content 
        //  ([0x0001-0xFFFF] = [1.0 - 65535.0] cd/m^2) 
        NvU16    desired_content_max_luminance; 
        // Minimum display luminance = desired min luminance of HDR content 
        //  ([0x0001-0xFFFF] = [1.0 - 6.55350] cd/m^2) 
        NvU16    desired_content_min_luminance; 
        // Desired maximum Frame-Average Light Level (MaxFALL) of HDR content 
        //  ([0x0001-0xFFFF] = [1.0 - 65535.0] cd/m^2) 
        NvU16    desired_content_max_frame_average_luminance; 
    }display_data; 
} NV_HDR_CAPABILITIES; 
  
#define NV_HDR_CAPABILITIES_VER1  MAKE_NVAPI_VERSION(NV_HDR_CAPABILITIES, 1) 
#define NV_HDR_CAPABILITIES_VER   NV_HDR_CAPABILITIES_VER1 
  
NVAPI_INTERFACE NvAPI_Disp_GetHdrCapabilities(__in NvU32 displayId, 
                    __inout NV_HDR_CAPABILITIES *pHdrCapabilities); 
 

It is important to remember that the capabilities reporting by the display is an optional 
item. In this even, the capabilities will all return as zero. In this event, you should 
assume a maximum luminance of 1000 nits, a white point of D65, and color primaries of 
DCI. These are the standard mastering expectations for HDR10/UHDA. Any display 
supporting this interface should do a reasonably good job at adapting to that level.  

Setting Metadata 
 
To enable HDR output and specify the mastering data to the display use the function 
NvAPI_Disp_HdrColorControl. 
 
typedef enum 
{ 
    //!< Get current HDR output configuration 
    NV_HDR_CMD_GET = 0, 
 
    //!< Set HDR output configuration 
    NV_HDR_CMD_SET = 1 
} NV_HDR_CMD; 
 
typedef enum 
{ 
    //!< HDR off - standard Low Dynamic Range output 
    NV_HDR_MODE_OFF    = 0, 
 
    //!< UHD BD HDR baseline mandatory output: YCbCr4:2:0 10/12bpc ST2084(PQ) EOTF 
    // Rec2020 color primaries. ST2086 static HDR metadata, 0..10000 nits luminance 
    // range. 
    NV_HDR_MODE_UHDBD  = 2, 
} NV_HDR_MODE; 
 
typedef struct _NV_HDR_COLOR_DATA 



 
 

{ 
    //!< Version of this structure 
    NvU32                             version; 
 
    //!< Command get/set 
    NV_HDR_CMD                        cmd; 
 
    //!< HDR mode 
    NV_HDR_MODE                       hdrMode; 
 
    //!< Static Metadata Descriptor Id (0 for static metadata type 1) 
    NV_STATIC_METADATA_DESCRIPTOR_ID  static_metadata_descriptor_id; 
 
    //!< Static Metadata Descriptor Type 1, CEA-861.3, SMPTE ST2086 
    struct 
    { 
        //!< x and y coordinates of color primary 0 (e.g. Red) of mastering display 
        // ([0x0000-0xC350] = [0.0 - 1.0]) 
        NvU16    displayPrimary_x0; 
        NvU16    displayPrimary_y0; 
 
        //!< x and y coordinates of color primary 1 (e.g. Green) of mastering display 
        // ([0x0000-0xC350] = [0.0 - 1.0]) 
        NvU16    displayPrimary_x1; 
        NvU16    displayPrimary_y1; 
  
        //!< x and y coordinates of color primary 2 (e.g. Blue) of mastering display 
        // ([0x0000-0xC350] = [0.0 - 1.0]) 
        NvU16    displayPrimary_x2; 
        NvU16    displayPrimary_y2; 
 
        //!< x and y coordinates of white point of mastering display 
        // ([0x0000-0xC350] = [0.0 - 1.0])  
        NvU16    displayWhitePoint_x; 
        NvU16    displayWhitePoint_y; 
 
        //!< Maximum display mastering luminance ([0x0001-0xFFFF] = [1.0 - 65535.0] 
        // cd/m^2) 
        NvU16    max_display_mastering_luminance; 
 
        //!< Minimum display mastering luminance ([0x0001-0xFFFF] = [1.0 - 65535.0] 
        // cd/m^2) 
        NvU16    min_display_mastering_luminance; 
 
        //!< Maximum Content Light level (MaxCLL) ([0x0001-0xFFFF] = [1.0 - 65535.0] 
        // cd/m^2) 
        NvU16    max_content_light_level; 
 
        //!< Maximum Frame-Average Light Level (MaxFALL) ([0x0001-0xFFFF] = [1.0 –  
        // 65535.0] cd/m^2) 
        NvU16    max_frame_average_light_level; 
    } mastering_display_data; 
} NV_HDR_COLOR_DATA; 
 



#define NV_HDR_COLOR_DATA_VER1  MAKE_NVAPI_VERSION(NV_HDR_COLOR_DATA, 1) 
#define NV_HDR_COLOR_DATA_VER   NV_HDR_COLOR_DATA_VER1 
 
NVAPI_INTERFACE NvAPI_Disp_HdrColorControl(__in NvU32 displayId, 
                    __inout NV_HDR_COLOR_DATA *pHdrColorData); 

 
Setting the mastering data (primaries, white point, max luminance, etc) to 0 has the 
special meaning that the content is mastered for the default with 1000 nit max 
luminance and DCI primaries. For all gaming content today, DCI primaries or sRGB 
primaries and 1000 nits maximum specified should produce good results. 
 
UI Compositing 
 
At this point, we’ve reached the ability to generate and display a scene is HDR on a 
UHD display. However, no game is complete without user interface elements. This is 
where scRGB as the output color space really simplifies a developer’s life. 
 
Today, UI is authored pretty much directly in the output referred sRGB color space. This 
has been a standard 2D workflow since roughly the beginning of time. As a result, the 
simplest solution is to keep the workflow as is. Since the scRGB is set to the same 
primaries, and with a white level that is the prescribed white for sRGB, the developer 
can simply blend the UI straight over top as they do today. The colors should come out 
identical to what the UI artists have been expecting based on their work developing it on 
an SDR monitor. 
 
If the back buffer was mapped with 1.0 being the max possible luminance for UHD, then 
the resulting UI would be quite uncomfortable for the user to look at for an extended 
period of time. Even if the user could tolerate the extreme brightness, they would likely 
lose a bit of the HDR fidelity, as the overly bright UI would stand as a reference to adapt 
the eyes making the scene look dimmer. 
 
It is worth mentioning a couple enhancements that a game developer may wish to add 
to make things go as smooth as possible with the UI. First, it is worth adding a scale 
factor to the UI when in HDR mode. As users may be accustomed to viewing the game 
on an overly bright SDR monitor, it may be worth upping the luminance level of the UI 
by some amount. Additionally, this can counteract the viewer adapting to the brighter 
highlights in the HDR scene. Secondly, if your game relies on a lot of transparent UI, it 
may be worth compositing the entire UI plane offscreen, then blending it in one 
compositing operation. This is useful, because extremely bright highlights can glow 
through virtually any level of transparency set in the UI, overwhelming the transparent 
elements. You can counteract that by applying a very simple tone map operator, like 
Reinhard ( x/(x+1) ) to bring the max level of anything below transparent pixels to a 
reasonable level.     
  
Tone Mapping in More Depth 
 



 
 

As most experienced graphics programmers already know, tone mapping covers a wide 
variety of methods. This document makes no attempt to catalog and explain them all. 
However, it is useful to cover some basic classifications just to show how things 
compare and why the paper recommends what it does. 
 
The most classic classification of tone mappers is local versus global. For those 
unaware, the differentiation is merely that global tone mappers perform the same 
operation on every pixel, while local tone mappers adjust what happens based on local 
conditions. Simplistically, you can turn the filmic operators recommended here into local 
operators by having an exposure that varies across the image. Because of the 
adaptation to different levels within one image, they can compress more data into a 
useful range. Generally, local tone mappers have a few of potential concerns as we see 
it today. First, they tend to have temporal stability issues making then less than ideal for 
moving images. (There was a recent paper by Disney research that offered solutions, 
but it required a window of several frames forward and backward.) Second, to get good 
results, local tone mappers often tend to be quite expensive. (Bilateral filters with a 
radius of more than 5% of the image size) Finally, they can at times look a bit hyper-
real, just because of how much they can enhance the image. So, based on 
performance, quality, and aesthetics, we feel like global operators are still the best the 
best choice for game developers today. 
 
Another dimension on which tone mappers can be classified is whether they are 
“constant color” or not. The issue here is whether the tone mapper operates on just the 
luminance value and maintains the same chromaticity no matter what, or whether it 
operates on the color channels independently. Obviously, most tone mapping 
algorithms can be adjusted to do either. Tone mapping the channels separately has a 
couple advantages. First, there is research tied to CAMs that the cones do adapt at 
least somewhat independently. Secondly, the curves working independently results in a 
natural desaturation toward white as you approach peak luminance. The advantage of a 
luminance only tone mapper is that it can provide something that looks more colorful, 
which might be a desirable art direction. On balance, we prefer the per-channel 
operators; however, given the possibility of art being tuned toward a luminance only 
tone mapper we added an extension to the standard ACES pipeline to allow a blending 
toward a luminance only mapping.  
 
A really good question to ask is why a tone mapper for HDR should be different 
compared to the one that you use today on an SDR screen. To generate a good image 
for an HDR display, the tone mapper really needs to have an understanding of the 
output luminance range of the display. Simply taking a tone mapper that is intended to 
generate an SDR image, taking the output as [0,1], and interpreting that as minimum to 
maximum luminance has problems. First, the original tone mapper will have over-
compressed much of the image, leaving it duller than you’d like. Secondly, even though 
it will pass through brighter values, it isn’t going to express any extra dynamic range 
from the scene, as this was already compressed out. Finally, the luminance levels 
produced for most of the scene will be overly bright. If the classic Reinhard operator (x / 
x + 1) is used and displayed on the full range of a 1000 nit display, the output luminance 



for an input middle gray will be over 150 nits. This is twice as luminous as the standard 
max level for sRGB, and it is nearly as bright as the monitor you are likely reading this 
on. (Many common LCD monitors have a maximum luminance of 200-300 nits, and 
most do not have brightness set to the maximum) If the goal were to view it outside on a 
sunny day, that might be reasonable, but under standard expected viewing conditions 
this will look overly bright and washed out. 
 

 
Figure 19 - Tone map functions scaled to max 1000 nit output 

 
As you can see in the diagram above, even the SDR/LDR ACES curve pulls values 
much brighter than what the 1000 nit ACES curve does. The reasoning is that it is best 
for the HDR curve to take advantage of much of that dynamic range to try to represent a 
wider band of mid-tones without compression. It also performs less compression on the 
highlights, as it simply has more room to work. In practice, the luminance level of middle 
gray and the mid-tones are boosted only a small amount on an HDR monitor, as these 
are already at a comfortable viewing level. (ACES SDR transform places middle gray at 
8 nits, and the HDR ACES curves place it at 10 nits) It is worth noting that the SDR 
curve above is already stretched to function over the wider range supported by the 1000 
nit reference curve. Otherwise, the curve would have reached 1000 nits at an input level 
of 16. 
 
Based on these pieces of data, and knowing that many games have recently picked up 
filmic tone mappers to get a more ‘cinematic’ look, ACES seems like a very logical 
choice. It is a global tone mapper that is modeled after the behavior of film. Second, it 
operates on the color channels independently and creates a natural desaturation of 
highlights. It has several reference curves that provide mappings for different display 
luminance levels. Finally, it is a standard with some traction. 
 
Parameterized ACES   
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It is important to remember that ACES is a framework. It offers reference transforms 
that cover SDR, 1000 nit, 2000 nit, and 4000 nit display output levels. However, it is 
expected that additional ODTs will be created for additional devices. In that spirit, we 
have created a parameterized version of the reference ODTs. (Figure 20 shows the 
shapes and levels of the reference transforms) The parameterized implements the 
stages of the standard ODTs, but allows them to be modified to handle a wider range of 
devices. It also helps simplify the shader development and maintenance. 
 

 
Figure 20 - Results produces by the reference ODTs, including the SDR ODT outputting toa 150 nit max display. 

 
The core portion of the parameterization is in the adjustable ODT curve. The reference 
curves are all defined as quadratic splines with fixed middle gray, input max luminance, 
and output max luminance. We’ve extended on this by implementing rescaling capability 
where all of these properties can be tweaked to more accurately match the target. For 
instance, while the 1000 nit reference curve has a peak input luminance of 10 stops 
above middle gray (0.18 * 2^10 = 184.32) and peak output of 1000 nits. Figure 21 
shows the how changes occur in the mid-tone region when the maximum input level is 
reduced by one stop to 9 stops above middle gray or the output value of middle gray 
has its luminance doubled. Extensions like this allow a more appropriate curve for a 500 
nit class display with a peak output of 500 nits. A peak input of 9 stops above middle 
gray, and something close to the 1000 nit curve is a good start. Figure 22 shows a set 
of derived curves targeting 500 nits of output. Note that the SDR derived one likely 
makes the mid-tones too light. Additionally, it might be advantageous to reduce the 
maximum input level for content that doesn’t get near the default maximum value. 
Finally, it is possible to interpolate between different reference curves. The code 
included in the sample demonstrates these sorts of manipulations.  
 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0
.0

4
5

0
.0

7
5

7

0
.1

2
7

3

0
.2

1
4

1

0
.3

6

0
.6

0
5

4

1
.0

1
8

2

1
.7

1
2

5

2
.8

8

4
.8

4
3

6

8
.1

4
5

9

1
3

.6
9

9
7

2
3

.0
4

3
8

.7
4

8
5

6
5

.1
6

7

1
0

9
.5

9
7

3

Aces SDR 150 nits

Aces 1000 nits

Aces 2000 nits



 
Figure 21 - Results from tweaked 1000 nit ACES ODTs 

 

 
Figure 22 - Derived 500 nit curves compared against 1000 nit reference ( A – 1000 nit reference just rescaled to 9 stops 

and 500 nits, B – 1000 nit curve blended with SDR curve at 50% strength, C – SDR curve scaled up to 500 nit level 

parameters) 

  
Further, we have added the ability to apply the tone curve just to the luminance 
component of the input color. This is to emulate the behavior of constant-color tone 
mapping that some games might have been authored around. The functionality is 
actually set-up as a weight from fully RGB to fully luminance based allowing a complete 
continuum to the fully saturated look. 
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Some final options are tied to viewing environment, output gamut, and display white 
point. In general, the display white point won’t need to be tweaked, as it is tied to the 
display standard. The output gamut is where colors will get clipped prior to conversion 
to scRGB. Since your inputs are likely based on sRGB primaries, you’ll see little 
difference in selecting anything wider. Finally, the viewing environment transform is a 
power function to adjust somewhat for contrast sensitivity differences between dark, 
dim, and standard environments. In general, the ODTs are setup for the dark 
environments of movies, so enabling the dim adjustment is probably a good idea. 
 
Gamut Mapping 
 
Gamut mapping is the operation of stretching or compression one color space to fill or fit 
within another. What we typically think of as tone mapping handles this from the 
perspective of luminance, but it does not generally address the remapping of 
chromaticities. As mentioned previously, our advice is generally to render within the 
sRGB primaries and not attempt any gamut mapping. The primary reasoning here is 
that gamut mapping is still a very inexact science, and it is fairly likely that most 
solutions today will have some level of artifacts that upset the art team.  
 
The simplest form of gamut mapping is merely clipping. This is essentially what 
happens in the pipeline described above. When you clip against the gamut, you can end 
up with hard cut offs where a hue gradient suddenly goes flat. Clipping isn’t a problem 
for what we’ve described above, because the math of rendering with sRGB primaries 
means that you won’t generate colors beyond the gamut of the sRGB chromacities. 
Neither the standard displays nor the new displays will have any issue with the sRGB 
gamut getting clipped. The tradeoff is that you cannot generate the highest saturation of 
colors for the UHD displays. 
 
More complex gamut mapping using either linear interpolation to the boundaries or 
something called soft clipping, where some colors get pulled inside, but clipping still 
occurs. The choices here would be to move the authoring to a wider color space, which 
seems like an unrealistic proposition in the near term due to the large cost associated 
with generating art assets, or to continue in sRGB but to stretch the end result. The 
challenges with these sorts of remappings is that we as humans have a concept 
referred to as “memory colors”. These are shades we implicitly recognize, such as skin 
tones. Any stretching or contracting of the gamut needs to be careful to not shift these 
unrealistically. Additionally, the perceived hues will often shift when linearly interpolating 
between white and the color extremes. This is because our perception of hues does not 
match the linear lines in most color spaces. 
 
If a development team wants to pursue generating richer colors for UHD displays, the 
best advice we have today is to avoid being too aggressive. First, using a color space 
such as IPT which was created to ensure linear hue lines is a reasonable basis for 
defining the gamut mapping. Second, anchoring a set of memory colors is likely useful. 
Finally, practical displays aren’t going to support the full BT. 2020 gamut. If you are 
going to gamut map, gamut map to something like the primaries of DCI-p3, as this is 



roughly the space that displays in the near future will be capable of supporting. This way 
you can minimize them performing compression on the gamut you just attempted to 
stretch to.  
 
 

Further Reading 
 
 
 
 


