
Real Virtual Texturing – Taking
Advantage of DirectX11.2 Tiled
Resources

Cem Cebenoyan
Developer Technology, NVIDIA

Overview

● Background

● API Overview

● Example Walkthrough

● Sparse shadow maps

Background

● Virtual texturing techniques useful

● eg Megatexture

● Suffer from a number of problems

● Difficulty with filtering

● Needs borders

● Performance problems

Enter Native HW Support

● But GPUs have had virtual memory for
years!

● We can leverage that directly to support
tiled / virtual GPU resources

Tiled Resources
● Subdivide texture into a grid of tiles,
allow some tiles to be “missing”

● No physical memory is allocated for
missing tiles

● Applications control tile residency

● Can “map” and “unmap” tiles at run-time

● Multiple concurrent mappings

● Implemented using virtual memory
subsystem

● Tiles correspond to VM pages

DirectX 11.2 Tiled Resources

● Looks like virtual memory:

A null

B 0

C 2

D 1

A B

C D

0

1

2

3

Virtual Texture Page Table Physical Memory

Tiled Resources In Practice

● Virtual texture is a texture or buffer with
D3D11_RESOURCE_MISC_TILED flag

A null

B 0

C 2

D 1

A B

C D

0

1

2

3

Virtual Texture Page Table Physical Memory

In D3D: Tiled Resource
(Texture2D or Buffer)

Tiled Resources In Practice

● Page table mappings are managed using
UpdateTileMappings().

A null

B 0

C 2

D 1

A B

C D

0

1

2

3

Virtual Texture Page Table Physical Memory

In D3D: Tile Mappings

Tiled Resources In Practice

● Physical memory is the Tile Pool, a buffer
with D3D11_BUFFER_MISC_TILE_POOL

A null

B 0

C 2

D 1

A B

C D

0

1

2

3

Virtual Texture Page Table Physical Memory

In D3D: Tile Pool

Checking Availability

● CheckFeatureSupport()

● D3D11_FEATURE_D3D11_OPTIONS1 field

● TiledResourcesTier subfield

● NOT_SUPPORTED, TIER_1, or TIER_2

TIER_1

● Tiled Resource and Tile Pool creation
supported

● Accessing (r/w) NULL mapped tiles has
undefined behavior

● Up to the user to define “default” tile and
point all “unmapped” tile mappings to it

● Available on all AMD and NVIDIA
hardware from the past few years

TIER_2

● Relaxes some restrictions

● Accessing NULL mapped tiles now defined
to return zero

● Writes to NULL mapped discarded

● Sample instructions for LOD clamp and
getting feedback supported

● Available on newest and future hardware

TIER_1 vs. TIER_2

Tiled
Resources

Tile Pool LOD clamp
Sample
instruction

Feedback
Sample
instruction

NULL
mapped
behavior

Supported
on all
current hw?

TIER 1 √ √ x x undefined √

TIER 2 √ √ √ √ Zero x

● In general, almost all algorithms can be mapped
to both tiers

● For example, LOD clamp can be approximated with
explicit LOD and gather4

● Tier 2 generally just an optimization

Other API features
● ResizeTilePool()

● Non-destructive

● TiledResourceBarrier()

● Handle this case:

A null

B 0

C 2

D 0

A B 0

1

2

3

Virtual Texture Page Table Physical Memory

C D Virtual RT

Plus / Minus over SW Solutions

● Plusses

● All filtering modes just work

● No borders necessary

● Fast (virtual->physical translation in hw)

● Minuses

● HW and OS limitations

● But note TIER1 is supported by a ton of hw

Tile Shapes

● Tile size is fixed in bytes, not texels

● Texture format determines tile shape in texels

● Address mapping designed to keep tiles roughly square

● GPU pages are 64KB

● Implications for residency granularity

 Texel
format

Bytes per
texel

Tile shape for
64KB pages,

texels

RGBA8 4 128 x 128

RGBA16F 8 128 x 64

DXT1 0.5 512 x 256

Sparse Shadowmaps

● Ubiquitous shadow rendering technique

● Used in virtually every game

● Major problem: mismatch in sampling
rates between image space and light space

● Source of most aliasing problems

Existing Solutions

● Existing solutions

● Creative transformations of the shadow map
(PSM, TSM)

● Divide-and-Conquer (CSM)

● Exotic: resolution-matched shadowmaps,
irregular Z-buffer

Sparse Shadowmaps
● Tiled texture support allows
defining sparsely populated textures

● Texture residency is controlled
per-tile

● Can view mip-mapped sparse
texture as a variable-resolution
representation

● Tiles missing at some level implies
the data is presented at coarser
LODs

● Provides finer-grained resolution
control for shadow mapping

Sparse Shadow Maps

● Render the shadow map with
non-uniform resolution

● Resolution allocated
dynamically, depending on
the current frame needs

● Shadow map represented by
sparsely populated MIP-
chain

Further from the light
High resolution shadow

Closer to the light
Low resolution shadow

Sparse ShadowMaps Demo!

Algorithm Overview
1. Render pre-pass, determining shadow map LOD at each pixel

● E.g. a separate channel in the G-buffer may be used to store the LOD

2. Build the min LOD map in shadow map space

● Project screen-space per-pixel LODs to light space, compute min LOD per-tile

3. Create a sorted list of tile allocation requests

● Sorted from coarse to fine LODs

4. Remap tiles from the tile pool

● First N tiles from the request queue, N is the size of the pool

5. Render to the sparse shadow map

● Broadcast geometry to multiple MIP levels, writes to unmapped tiles ignored

6. Shade using the sparse shadow map
● Equivalent to other sparse texture usage

Algorithm Overview
1. Render pre-pass, determining shadow map LOD at each pixel

● E.g. a separate channel in the G-buffer may be used to store the LOD

2. Build the min LOD map in shadow map space

● Project screen-space per-pixel LODs to light space, compute min LOD per-tile

3. Create a sorted list of tile allocation requests

● Sorted from coarse to fine LODs

4. Remap tiles from the tile pool

● First N tiles from the request queue, N is the size of the pool

5. Render to the sparse shadow map

● Broadcast geometry to multiple MIP levels, writes to unmapped tiles ignored

6. Shade using the sparse shadow map
● Equivalent to other sparse texture usage

Required Shadowmap LOD

Darker areas require higher shadowmap
resolution

Algorithm Overview
1. Render pre-pass, determining shadow map LOD at each pixel

● E.g. a separate channel in the G-buffer may be used to store the LOD

2. Build the min LOD map in shadow map space

● Project screen-space per-pixel LODs to light space, compute min LOD per-tile

3. Create a sorted list of tile allocation requests

● Sorted from coarse to fine LODs

4. Remap tiles from the tile pool

● First N tiles from the request queue, N is the size of the pool

5. Render to the sparse shadow map

● Broadcast geometry to multiple MIP levels, writes to unmapped tiles ignored

6. Shade using the sparse shadow map
● Equivalent to other sparse texture usage

Sparse texture and min LOD map

0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 1

0 0 1 1 2 2 2 2

0 0 0 1

0 0 0 0 3 3 3 3

0 0 0 1 3 3 3 3

0 0 1 1 3 3 3 3

0 0 1 1 3 3 3 3

2 2 2 2

LO
D 0

LOD 0

LOD 1

LOD 2

LOD 3

Min LOD in the shadowmap space

Algorithm Overview
1. Render pre-pass, determining shadow map LOD at each pixel

● E.g. a separate channel in the G-buffer may be used to store the LOD

2. Build the min LOD map in shadow map space

● Project screen-space per-pixel LODs to light space, compute min LOD per-tile

3. Create a sorted list of tile allocation requests

● Sorted from coarse to fine LODs

4. Remap tiles from the tile pool

● First N tiles from the request queue, N is the size of the pool

5. Render to the sparse shadow map

● Broadcast geometry to multiple MIP levels, writes to unmapped tiles ignored

6. Shade using the sparse shadow map
● Equivalent to other sparse texture usage

Algorithm Overview
1. Render pre-pass, determining shadow map LOD at each pixel

● E.g. a separate channel in the G-buffer may be used to store the LOD

2. Build the min LOD map in shadow map space

● Project screen-space per-pixel LODs to light space, compute min LOD per-tile

3. Create a sorted list of tile allocation requests

● Sorted from coarse to fine LODs

4. Remap tiles from the tile pool

● First N tiles from the request queue, N is the size of the pool

5. Render to the sparse shadow map

● Broadcast geometry to multiple MIP levels, writes to unmapped tiles ignored

6. Shade using the sparse shadow map
● Equivalent to other sparse texture usage

LOD 0

LOD 1

LOD 2

LOD 3

Unallocated tiles are
painted gray

Camera

Shadow map mips with allocated
tiles

Rendering to the sparse shadowmap

● Geometry intersecting multiple tiles
need to be replayed to appropriate LODs

● GS sends triangle to finest level that
has tiles mapped, and all coarser levels

● Can use instanced GS for efficiency

● Writes to unmapped tiles are dropped

0 1

0 2

Need to render the triangle at LOD 0, 1, 2

Algorithm Overview
1. Render pre-pass, determining shadow map LOD at each pixel

● E.g. a separate channel in the G-buffer may be used to store the LOD

2. Build the min LOD map in shadow map space

● Project screen-space per-pixel LODs to light space, compute min LOD per-tile

3. Create a sorted list of tile allocation requests

● Sorted from coarse to fine LODs

4. Remap tiles from the tile pool

● First N tiles from the request queue, N is the size of the pool

5. Render to the sparse shadow map

● Broadcast geometry to multiple MIP levels, writes to unmapped tiles ignored

6. Shade using the sparse shadow map
● Equivalent to other sparse texture usage

Shading pass

● Use the shadowmap as any other sparse texture

● Use the min LOD map to determine the LOD

● Feed that into either LOD clamp or direct LOD texture
sampling

● Can also do a speculative lookup and replay

Final lit scene

Questions?

● cem@nvidia.com

● For more info:

● Massive Virtual Textures for Games: Direct3D Tiled
Resources, Matt Sandy, Microsoft

● http://channel9.msdn.com/Events/Build/2013/4-063

● Special thanks to Alexey Panteleev and Yury
Uralsky

mailto:cem@nvidia.com
http://channel9.msdn.com/Events/Build/2013/4-063
http://channel9.msdn.com/Events/Build/2013/4-063
http://channel9.msdn.com/Events/Build/2013/4-063

