From Terrain To Godrays: Better Use of DX11

Iain Cantlay Andrei Tatarinov
Developer Technology Group, NVIDIA

Better Use of Tessellation

- One of the most recent additions to DirectX
- And one of the least explored too

Hull Shader

Domain Shader

Getting More Adoption

- Originally tessellation was available only on DX11-capable PCs

Getting More Adoption

- Originally tessellation was available only on DX11-capable PCs

- Wasn't available on consoles
- Tessellation brings special requirements to the content

Getting More Adoption

- Next-generation consoles support it too!

Getting More Adoption

- Some AAA-titles already use it

Screenshots were made by Andrew Iain Burnes and published at GeForce.com

Outline

- Common use cases
- Terrain
- Super-static objects
- Novel approaches
- Tessellated particles
- Godrays
- Tessellation Tips and Tricks

Terrain

A classic task for tessellation

Terrain

- Requires
- Detail at wide range of scales
- Highly mobile view, e.g., flying
- Frequent, seamless LOD changes
- H.A.W.X 2
- Frostbite 2: BF3, NFS The Run
- Frostbite 3: BF4, NFS Rivals

Terrain

- Requires
- Detail at wide range of scales
- Highly mobile view, e.g., flying
- Frequent, seamless LOD changes
- H.A.W.X 2
- Frostbite 2: BF3, NFS The Run
- Frostbite 3: BF4, NFS Rivals

Tessellation Patches

HAWX2
DX9
DX11 Patches Tessellate - HS

BF3

Details not accurate!!

Extra Detail

DX9 offline tessellation

HAWX2

DX9 tessellation on CPU

DX11 tessellation
Sample height map in DS

BF3

Battlefield 3 courtesy of EA DICE

Adaptive Tessellation

BF3

NFS Rivals

Need For Speed
Rivals courtesy of Ghost Games and EA

Need For Speed Rivals courtesy of Ghost Games and EA

Need For Speed Rivals courtesy of Ghost Games and EA

Performance and Conclusions

- Add detail easily !/\$
- Natural fit to terrain
- High perf on many platforms

Battlefield 3 DX11	1920×1200		
	terrain medium	ultra	$\%$
GTX 750 Ti (2GB)	46.1	$\mathbf{4 3 . 7}$	95%
GTX 760 (2GB)	78.1	$\mathbf{7 3}$	94%
GTX 770 (2GB)	91.8	$\mathbf{8 6 . 7}$	94%
R7 260X (2GB)	43.9	$\mathbf{4 0 . 5}$	92%
R9 270X (2GB)	65.4	$\mathbf{6 0 . 3}$	92%
R9 280X (3GB)	92.5	$\mathbf{8 3 . 2}$	90%

Need For Speed Rivals courtesy of Ghost Games and EA

Tessellating super-static objects

- Super-static objects are good candidates for tessellation

We did this in Metro: Last Light

- A joint project of 4A Games and NVIDIA
- Use super-static geometry that has bump maps
- Implement hull and domain shaders
- Add displacement to the geometry

Metro: Last Light

Tessellation OFF

Metro: Last Light

Metro: Last Light

Tessellation OFF

Metro: Last Light

Tessellation ON

Under-tessellation is bad

- Super-static objects are often modelled with large triangles
- Level of detail required to represent displacement can exceed DirectX tessellation factor limit

Under-tessellation is bad

Under-tessellation is bad

Under-tessellation is bad

Virtual dicing

- Virtual dicing subdivides big triangles into smaller ones on-the-fly
- This can also be done offline

Virtual dicing in Metro: Last Light

Virtual dicing in Metro: Last Light

Virtual dicing in Metro: Last Light

Over-tessellating is wasteful

- Some areas on displacement maps don't require high tessellation factors

Over-tessellating is wasteful

- Some areas on displacement maps don't require high tessellation factors

Over-tessellating is wasteful

- Some areas on displacement maps don't require high tessellation factors

Over-tessellating is wasteful

- Some areas on displacement maps don't require high tessellation factors

Use adaptive tessellation

- Analyze the displacement map covered by the triangle
- Adjust the inside tessellation factor accordingly

Adaptive tessellation in detail

- Use a simple quad mesh as an example

Adaptive tessellation in detail

- Use a simple quad mesh as an example

Adaptive tessellation in detail

- Add displacement map

Adaptive tessellation in detail

- Smooth shapes require high expansion

Adaptive tessellation in detail

- Flat areas can use lower expansion

Adaptive tessellation in detail

- Take the average from coarse mip-level

Adaptive tessellation in detail

- Use finer mip-level to calculate variance

Adaptive tessellation in detail

- Calculate the metric based on variance

Adaptive tessellation in detail

- Use threshold to control tessellation factors

DEMO

- Metro: Last Light

Performance and conclusions

- Metro: Last Light, Undercity level, 1920x1200, Very High, SSAA OFF

FPS	Adaptive OFF	Adaptive ON	Gain
GTX 750Ti	17.2	$\mathbf{3 1 . 1}$	$\mathbf{2 X}$
GTX 760	27.8	$\mathbf{4 7 . 2}$	$\mathbf{2 X}$
GTX 770	35.1	$\mathbf{6 0 . 7}$	$\mathbf{2 X}$
R7 260X	16.2	$\mathbf{2 9 . 4}$	$\mathbf{2 X}$
R9 270X	13.9	$\mathbf{4 1 . 6}$	$\mathbf{3 X}$
R9 280X	14.9	$\mathbf{5 7 . 7}$	$\mathbf{4 X}$

Performance and conclusions

- Adaptive tessellation doubles performance on tessellation-heavy levels in Metro: Last Light
- Don't be afraid to tessellate densely where needed
- But use your triangles efficiently!

Another meaning of tessellation

- Before DX11, we could only perform calculations

Vertex Shader

 at vertex, geometry or pixel rates
Geometry Shader

Pixel Shader

Another meaning of tessellation

Same Blinn-Phong shading done at different rates:

- Gouraud
- Flat
- Phong

Vertex Shader

Geometry Shader

Pixel Shader

Another meaning of tessellation

Same Blinn-Phong shading done at different rates:

- Gouraud
- Flat
- Phong

Only Phong looks nice

Vertex Shader

Geometry Shader

Pixel Shader

Another meaning of tessellation

- Before DX11, we had to choose between three "fixed" rates
- Vertex or geometry rate is too low
- For some effects, pixel rate is too high

Pixel Shader

Geometry Shader

Another meaning of tessellation

- Before DX11, we had to choose between three "fixed" rates
- Vertex or geometry rate is too low
- For some effects, pixel rate is too high

Another meaning of tessellation

- Tessellation is a stage with adjustable shading rate

Hull Shader

Tessellation Unit

Domain Shader

Adjustable shading rate

- Hull shader is a "slider" that allows to adjust shading rate
- Domain shader does the actual shading

Vertex rate

Pixel rate

Adjustable shading rate

- Similar to Reyes pipeline
- Shading is done in object space
- Sampling (rasterization) is only used to interpolate results

Which effects can benefit from it?

- Computation-heavy effects with low frequency
- Particle shadows
- Volumetric effects
- Global illumination
- ...

Which effects can benefit from it?

- Computation-heavy effects with low frequency
- Particle shadows
- Volumetric effects
- Global illumination
- ...

Particle Shadow Mapping

- Calculate shadow from a particle system
- Calculate particle system self-shadowing

Particle Shadow Mapping

- Particle systems contain thousands of particles
- Shadowing has to be calculated for every pixel of every particle
- Or maybe not?

Particle Shadow Mapping

- Let's calculate it in DS!
- Tessellate the particle sprites
- Use HS to determine shading rate

Fourier Opacity Mapping

- A sample by Jon Jansen and Louis Bavoil

https://developer.nvidia.com/sites/default/files/akamai/gamedev/files/sdk/11/ OpacityMappingSDKWhitePaper.pdf

Fourier Opacity Mapping

- A sample by Jon Jansen and Louis Bavoil

https://developer.nvidia.com/sites/default/files/akamai/gamedev/files/sdk/11/ OpacityMappingSDKWhitePaper.pdf

DEMO

- Fourier Opacity Mapping sample

Performance

- Fourier Opacity Mapping sample, 1920x1200

FPS	Per-Pixel	Tessellated	Gain
GTX 750Ti	17.2	68.7	4X
GTX 760	34.2	118.7	3.5X
GTX 770	48.2	155.2	2x
R7 260x	15.1	65.3	4X
R9 270x	21.9	85.3	4X
R9 280X	32.8	100.5	3X

Particle Irradiance in 3DMark

- This approach was successfully used in 3DMark for Windows 8

Which effects can benefit from it?

- Computation-heavy effects with low frequency
- Particle shadows
- Volumetric effects
- Global illumination
- ...

Which effects can benefit from it?

- Computation-heavy effects with low frequency
- Particle shadows
- Volumetric effects
- Global illumination
- ...

Volumetric effects

- Typically use ray-marching to integrate over the medium inside the volume

Godrays

- We have a medium and objects that occlude it from the light
- Occluders are typically represented as rendered into shadowmap

Godrays

At each ray-marching step

- Medium transmittance is calculated
- Shadowmap is fetched

Godrays

- We don't need to do that many ray-marching steps if the medium is uniform
- We need to know the contents of the volume

Godrays

- Instead of rendering the volume, let's render the actual geometry of godrays!

Tessellated godrays

- Scene

Tessellated godrays

- Shadowmap

Tessellated godrays

- Render grid

Tessellated godrays

- Tessellate it

Tessellated godrays

- Fetch from shadowmap and offset vertices

Tessellated godrays

- Don't forget the cap

Tessellated godrays

- Integrate with positive sign for backfaces
- Integrate with negative sign for frontfaces

Tessellated godrays

- Integrate with positive sign for backfaces
- Integrate with negative sign for frontfaces

Tessellated godrays

- Integrate with positive sign for backfaces
- Integrate with negative sign for frontfaces

Tessellated godrays

- Integrate with positive sign for backfaces
- Integrate with negative sign for frontfaces

Tessellated godrays

- Result

Why use tessellation?

- Tessellation allows making grid resolution adaptive

Why use tessellation?

- Tessellation allows making grid resolution adaptive

Adaptive tessellation

- Tessellated grid

Adaptive tessellation

- Optimized grid

Adaptive tessellation

- Geometry of godrays

Advantages

- Up to 4X performance improvement
- No banding, no aliasing
- Ability to represent small details

Assassin's Creed IV Black Flag

- We integrated tessellation-based godrays into Assassin's Creed IV Black Flag
- A joint project of Ubisoft Kiev and NVIDIA

Assassin's Creed IV Black Flag

Assassin's Creed IV Black Flag

Assassin's Creed IV Black Flag

Assassin's Creed IV Black Flag

Assassin's Creed IV Black Flag

Assassin's Creed IV Black Flag

Assassin's Creed IV Black Flag

Godrays OFF

Assassin's Creed IV Black Flag

Godrays ON

Which effects can benefit from it?

- Computation-heavy effects with low frequency
- Particle shadows
- Volumetric effects
- Global illumination
- ...

Which effects can benefit from it?

- Computation-heavy effects with low frequency
- Particle shadows
- Volumetric effects

- Global illumination

- ...

Tips and Tricks

- Adding tessellation to your game is not that straightforward
- These corner-cases require attention:
- Tessellation vs. Depth Pre-Pass
- Tessellation vs. Shadowmapping
- Tessellation vs. Decals

Tips and Tricks

- Tessellation vs. Depth Pre-Pass
- Tessellation vs. Shadowmapping
- Tessellation vs. Decals

Tips and Tricks

- Tessellation vs. Depth Pre-Pass
- Tessellation vs. Shadowmapping
- Tessellation vs. Decals

Tessellation vs. Depth pre-pass

- Tessellating during depth pre-pass can kill the performance benefits of depth pre-pass

Tessellation vs. Depth pre-pass

- Turn depth pre-pass off or
- Don't use tessellation in depth pre-pass
- Use always positive tessellation
- Configure depth test properly

Tessellation vs. Depth pre-pass

- Not tessellating in depth pre-pass

Tessellation vs. Depth pre-pass

- Not tessellating in depth pre-pass

Tessellation vs. Depth pre-pass

- Not tessellating in depth pre-pass

Tessellation vs. Depth pre-pass

- Use always-positive displacement

Tips and Tricks

- Tessellation vs. Depth Pre-Pass
- Tessellation vs. Shadowmapping
- Tessellation vs. Decals

Tips and Tricks

- Tessellation vs. Depth Pre-Pass
- Tessellation vs. Shadowmapping
- Tessellation vs. Decals

Tessellation vs. Shadowmapping

- Tessellating while rendering to shadowmap can kill performance

VS.

Tessellation vs. Shadowmapping

- Turning tessellation off in shadowmaps can introduce artifacts

Tessellation vs. Shadowmapping

- We decided to turn tessellation off in shadowmaps in Metro: Last Light
- This introduced artifacts that artists had to fix by tuning the content

Metro: Last Light

Tessellation OFF

Metro: Last Light

Tessellation ON

Metro: Last Light

Tessellation OFF

Metro: Last Light

Tessellation ON

Tessellation vs. Shadowmapping

- Use always-positive displacement

Tessellation vs. Shadowmapping

- Use always-positive displacement

Tessellation vs. Shadowmapping

- Use always-positive displacement

Tessellation vs. Shadowmapping

- If performance is not a problem, what tessellation factor to choose for shadowmap?
- The same as was used for main screen rendering or
- Calculated relative to shadowmap camera

Tessellation vs. Shadowmapping

- Problem of camera and light opposing each other

Tessellation vs. Shadowmapping

- Problem of camera and light opposing each other

Tessellation vs. Shadowmapping

- Camera and light oppose each other

Camera view, no shadows

Camera view, shadows enabled

Shadowmap view

Tessellation vs. Shadowmapping

- Using main camera tessellation factor

Camera view, no shadows, wireframe

Camera view, shadows enabled

Shadowmap view

Tessellation vs. Shadowmapping

- Using shadowmap tessellation factor

Camera view, no shadows, wireframe

Camera view, shadows enabled

Shadowmap view

Tessellation vs. Shadowmapping

- Choose the maximum tessellation factor from the main screen factor and shadowmap factor
- Make sure to not generate sub-pixel triangles

Tips and Tricks

- Tessellation vs. Depth Pre-Pass
- Tessellation vs. Shadowmapping
- Tessellation vs. Decals

Tips and Tricks

- Tessellation vs. Depth Pre-Pass
- Tessellation vs. Shadowmapping
- Tessellation vs. Decals

Tessellation vs. Decals

- Tessellated geometry can penetrate through decals
- We had this problem during the development of Metro: Last Light
- Artists had to fix it by tuning the content

Tessellation vs. Decals

- Use always-negative displacement

Tessellation vs. Decals

- Use always-negative displacement

Tessellation vs. Decals

- Use always-negative displacement

Tessellation vs. Decals

- Runways in H.A.W.X. 2
- Modulate based on normal's vertical component

Tessellation vs. Decals

- Use "screen space decals" technique
- Pope Kim, Screen Space Decals in Warhammer 40,000: Space Marine, Siggraph 2012

Conclusions

- Tessellation can be used to produce spectacular images on all platforms
- Use your triangles wisely!
- The new paradigm of varying shading rate can bring significant speedup to your effects

Conclusions

- When adding tessellation to your title, keep these in mind:
- Tessellation vs. Depth pre-pass
- Tessellation vs. Shadowmapping
- Tessellation vs. Decals

References

- Iain Cantlay, Adaptive Terrain Tessellation on the GPU, Siggraph 2008
- Albert Cervin, Adaptive Hardware-accelerated Terrain Tessellation, Linkoping University, 2012
- Mattias Widmark, Terrain in Battlefield 3: A Modern, Complete and Scalable System, GDC 2012
- Jon Jansen, Louis Bavoil, Fast Rendering of OpacityMapped Particles Using DirectX 11 Tessellation and Mixed Resolutions, Nvidia SDK whitepaper, 2011
- Pope Kim, Screen Space Decals in Warhammer 40,000: Space Marine, Siggraph 2012

Acknowledgements

Nvidia
Alex Kharlamov
Nick Chirkov
Jon Jansen
Louis Bavoil

4A Games
Oles Shishkovtsov
Yuriy Saschuk
Sergei Karmalsky

Dice

Johan Andersson
Mattias Widmark

Futuremark

Jani Joki
Juha Sjoholm

Ghost Games
Filip Karlsson $2^{\text {nd }}$

Ubisoft Kiev

Sam Kovalev
Roman Bobel
Kolya Naichuk
Artem Kandinskyi

Ubisoft Sofia

Razvan Eliade

Thanks!

