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Topics 

● D3D/GL Driver Models 

● Types of Sync Points 

● How bad are they, really? 

● Detection 

● Repair 

● Summary 
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D3D Driver Model 

● Multithreaded 

● Client Thread (Your Application + D3D 
Runtime) 

● Server Thread (D3D Runtime [DDI] + Driver) 

● GPU (??) 

● Remains in user-mode for as long as 
possible 
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GL Driver 

● Very similar 
● Client thread (your application + GL entry points) 

● Server thread (shelved data + expansion) 

● GPU 

● Again, very little time in Kernel Mode 
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Types of Sync Points 

● Driver Sync Point   

● CPU-GPU Sync Point 

● Can be Server->GPU     

● Can be Client->GPU      
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Driver Sync Point 

● Major concern in OpenGL 

● Minor concern in D3D 

● Caused when Client thread would need 
information available only to Server thread 

● In GL, any function that returns a value 

● In D3D, certain State-getting operations 
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Driver Sync Point 
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CPU-GPU Sync Point: Defined 

When an application-side operation requires 
GPU work to finish prior to the completion 
of the provoking operation, a CPU-GPU 
Sync Point has been introduced. 
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CPU-GPU Sync Point (cont’d) 

● Primary causes are buffer updates and 
obtaining query results 

● GPU readback 

● e.g. ReadPixels 

● Locking the Backbuffer 

● Complete list of entry points in Appendix 
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CPU-GPU Sync Point Visualized 

● Ideal frame time should be max(CPU 
time, GPU time) 

● Sync points cause this to be CPU Time + 
GPU Time. 
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CPU-GPU (Server->GPU) Sync Point 
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CPU-GPU (Client->GPU) Sync Point 
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How bad are they, really? 

● One CPU-GPU Sync Point can halve your 
framerate. 

● The more there are, the harder they are 
to detect 

● They are hard to detect with sampling 
profilers—the time disappears into Kernel 
Time. 
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We get it. They suck. Now what? 

● GPU Timestamp Queries to the rescue! 
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Finding CPU-GPU Sync Points 

● For each entry point that could cause a 
CPU-GPU sync point… 

● Wrap the call with two GPU Timestamp 
Queries (Don’t forget the Disjoint Query) 

● Ideally: record a portion of the stack at the 
call site 

● Also record CPU timestamps around the call 
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Finding Sync Points (cont’d) 

● Later: 

● Compute the elapsed time between the 
queries 

● If it is small (< 10 ns), then no GPU kickoff 
was required 

● If it’s larger, a GPU kickoff probably 
occurred—you’ve found a CPU-GPU Sync 
Point! 
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Code! (Original) 

 
 
 
ctx->Map(...); 
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Code! (New) 

ctx->Begin(pDisjoint); 
ctx->End(pTimestampBefore); 
double earlier = timer::now(); 
ctx->Map(...); 
double cpuElapsed = timer::now() – earlier; 
ctx->End(pTimestampAfter); 
ctx->End(pDisjoint); 
stack = getStackRecord(); 
gSPChecker->Register(pDisjoint, pTimestampBefore, pTimestampAfter, 
                     stack, cpuElapsed); 
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Four Possibilities 

CPU Elapsed GPU Elapsed Meaning 

Low ~None <10 ns No problem! 

High ~None <10 ns Possible Driver Sync (Bad) 

Low Low* (~1 us) Possible Server->GPU Sync (Worse) 

High Low* (~1 us) Possible Client->GPU Sync (Ugh) 

* Let’s talk about this in a bit 
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No problem! 
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Client->GPU Sync Point - detected 
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Low elapsed GPU? 

● GPU is fed commands in FIFO order 

● Likely only command caught is WFI 

● Which is ~1,000 clocks, or ~1 us or more. 

● Subject for future improvements 
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Split push buffer? 

● Two calls right next to each other may 
wind up in different pushbuffer fragments 

● And different GPU kickoffs 

● This doesn’t hurt our scheme—Timestamp 
queries occur after “all results of previous 
commands are realized.” 

● This means the timestamp is from the end of 
the pipeline—not the beginning. 
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Split Pushbuffer (cont’d) 

● Shouldn’t be an issue unless you are CPU-
bound and barely using the GPU 

● Workarounds. Only report: 

● Violators that have either large elapsed GPU 
times (>1 us); or 

● Hash the call stack, look for those that show 
up repeatedly. 
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Fixing CPU-GPU Sync Points 

● Adjust flags 
● E.g. D3D9, never lock a default buffer with Flags=0 

● Be wary of using nearly all GPU memory 

● May not be enough room for DISCARD operations 

● Spin-locking on query results—that’s definitely 
a CPU-GPU Sync Point, regardless of API. 
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Fixing CPU-GPU Sync Points (cont’d) 

● Use NO_OVERWRITE in combination with 
GPU fences (or event queries) to ensure 
safe, contention-free updates 

● Defer Query resolution until at least one 
frame later 

● Use PBOs to do asynchronous readbacks 

● And wait “awhile” before mapping. 
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Summary 

 

 

CPU-GPU Sync Points. Not even one. 
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Appendix 
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GPU Timestamp Queries 

● Tells you the GPU-time when preceeding 
operations have completed—including 
writes to the FB. 

● Two timestamp queries adjacent in the 
pushbuffer will have an elapsed time of 
1/(Clock Frequency). (Very, very small). 
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Problematic D3D9 Entry Points 

● Create*^ 

● IDirect3DQuery9::GetData 

● *::Lock 

● *::LockRect 

● Present 

^ Rare, but possible 
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Problematic D3D11 Entry Points 

● ID3D11Device::CreateBuffer*^ 

● ID3D11Device::CreateTexture*^ 

● ID3D11DeviceContext::Map 

● ID3D11DeviceContext::GetData 

● IDXGISwapChain::Present 

^ Rare, but possible 
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Problematic GL Entry Points 

● glBufferData^ 

● glBufferSubData^ 

● glClientWaitSync 

● glFinish 

^ Rare, but possible 
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Problematic GL Entry Points 

● glGetQueryResult 

● glMap* 

● glTexImage*^ 

● glTexSubImage*^ 

● SwapBuffers 

^ Rare, but possible 
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