
Avoiding Catastrophic
Performance Loss

Detecting CPU-GPU Sync Points
John McDonald, NVIDIA Corporation

www.gameworks.nvidia.com

Topics

● D3D/GL Driver Models

● Types of Sync Points

● How bad are they, really?

● Detection

● Repair

● Summary

gameworks.nvidia.com

www.gameworks.nvidia.com

D3D Driver Model

● Multithreaded

● Client Thread (Your Application + D3D
Runtime)

● Server Thread (D3D Runtime [DDI] + Driver)

● GPU (??)

● Remains in user-mode for as long as
possible

gameworks.nvidia.com

www.gameworks.nvidia.com

GL Driver

● Very similar
● Client thread (your application + GL entry points)

● Server thread (shelved data + expansion)

● GPU

● Again, very little time in Kernel Mode

gameworks.nvidia.com

www.gameworks.nvidia.com

Example Healthy Timeline

Client

Driver

Runtime

GPU

Runtime (DDI)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Present

gameworks.nvidia.com

www.gameworks.nvidia.com

Types of Sync Points

● Driver Sync Point  

● CPU-GPU Sync Point

● Can be Server->GPU   

● Can be Client->GPU     

gameworks.nvidia.com

www.gameworks.nvidia.com

Driver Sync Point

● Major concern in OpenGL

● Minor concern in D3D

● Caused when Client thread would need
information available only to Server thread

● In GL, any function that returns a value

● In D3D, certain State-getting operations

gameworks.nvidia.com

www.gameworks.nvidia.com

Healthy Timeline

Client

Driver

Runtime

GPU

Runtime (DDI)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Present

gameworks.nvidia.com

www.gameworks.nvidia.com

Driver Sync Point

Client

Driver

Runtime

GPU

Runtime (DDI)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Driver Sync Point

gameworks.nvidia.com

www.gameworks.nvidia.com

CPU-GPU Sync Point: Defined

When an application-side operation requires
GPU work to finish prior to the completion
of the provoking operation, a CPU-GPU
Sync Point has been introduced.

gameworks.nvidia.com

www.gameworks.nvidia.com

CPU-GPU Sync Point (cont’d)

● Primary causes are buffer updates and
obtaining query results

● GPU readback

● e.g. ReadPixels

● Locking the Backbuffer

● Complete list of entry points in Appendix

gameworks.nvidia.com

www.gameworks.nvidia.com

CPU-GPU Sync Point Visualized

● Ideal frame time should be max(CPU
time, GPU time)

● Sync points cause this to be CPU Time +
GPU Time.

gameworks.nvidia.com

www.gameworks.nvidia.com

Healthy Timeline

Client

Driver

Runtime

GPU

Runtime (DDI)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Present

gameworks.nvidia.com

www.gameworks.nvidia.com

CPU-GPU (Server->GPU) Sync Point

Client

Driver

Runtime

GPU

Runtime (DDI)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Server->GPU Sync Point

gameworks.nvidia.com

www.gameworks.nvidia.com

Healthy Timeline

Client

Driver

Runtime

GPU

Runtime (DDI)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Present

gameworks.nvidia.com

www.gameworks.nvidia.com

CPU-GPU (Client->GPU) Sync Point

Client

Driver

Runtime

GPU

Runtime (DDI)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Client->GPU Sync Point

gameworks.nvidia.com

www.gameworks.nvidia.com

How bad are they, really?

● One CPU-GPU Sync Point can halve your
framerate.

● The more there are, the harder they are
to detect

● They are hard to detect with sampling
profilers—the time disappears into Kernel
Time.

gameworks.nvidia.com

www.gameworks.nvidia.com

We get it. They suck. Now what?

● GPU Timestamp Queries to the rescue!

gameworks.nvidia.com

www.gameworks.nvidia.com

Finding CPU-GPU Sync Points

● For each entry point that could cause a
CPU-GPU sync point…

● Wrap the call with two GPU Timestamp
Queries (Don’t forget the Disjoint Query)

● Ideally: record a portion of the stack at the
call site

● Also record CPU timestamps around the call

gameworks.nvidia.com

www.gameworks.nvidia.com

Finding Sync Points (cont’d)

● Later:

● Compute the elapsed time between the
queries

● If it is small (< 10 ns), then no GPU kickoff
was required

● If it’s larger, a GPU kickoff probably
occurred—you’ve found a CPU-GPU Sync
Point!

gameworks.nvidia.com

www.gameworks.nvidia.com

Code! (Original)

ctx->Map(...);

gameworks.nvidia.com

www.gameworks.nvidia.com

Code! (New)

ctx->Begin(pDisjoint);
ctx->End(pTimestampBefore);
double earlier = timer::now();
ctx->Map(...);
double cpuElapsed = timer::now() – earlier;
ctx->End(pTimestampAfter);
ctx->End(pDisjoint);
stack = getStackRecord();
gSPChecker->Register(pDisjoint, pTimestampBefore, pTimestampAfter,
 stack, cpuElapsed);

gameworks.nvidia.com

www.gameworks.nvidia.com

Four Possibilities

CPU Elapsed GPU Elapsed Meaning

Low ~None <10 ns No problem!

High ~None <10 ns Possible Driver Sync (Bad)

Low Low* (~1 us) Possible Server->GPU Sync (Worse)

High Low* (~1 us) Possible Client->GPU Sync (Ugh)

* Let’s talk about this in a bit

gameworks.nvidia.com

www.gameworks.nvidia.com

No problem!

Client

Driver

Runtime

GPU

Runtime (DDI)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Present

Queries Well behaved Map

CPU Timestamp

gameworks.nvidia.com

www.gameworks.nvidia.com

Client->GPU Sync Point - detected

Client

Driver

Runtime

GPU

Runtime (DDI)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Queries

CPU-GPU Sync Point

CPU Timestamp

gameworks.nvidia.com

www.gameworks.nvidia.com

Low elapsed GPU?

● GPU is fed commands in FIFO order

● Likely only command caught is WFI

● Which is ~1,000 clocks, or ~1 us or more.

● Subject for future improvements

gameworks.nvidia.com

www.gameworks.nvidia.com

Split push buffer?

● Two calls right next to each other may
wind up in different pushbuffer fragments

● And different GPU kickoffs

● This doesn’t hurt our scheme—Timestamp
queries occur after “all results of previous
commands are realized.”

● This means the timestamp is from the end of
the pipeline—not the beginning.

gameworks.nvidia.com

www.gameworks.nvidia.com

Split Pushbuffer (cont’d)

● Shouldn’t be an issue unless you are CPU-
bound and barely using the GPU

● Workarounds. Only report:

● Violators that have either large elapsed GPU
times (>1 us); or

● Hash the call stack, look for those that show
up repeatedly.

gameworks.nvidia.com

www.gameworks.nvidia.com

Fixing CPU-GPU Sync Points

● Adjust flags
● E.g. D3D9, never lock a default buffer with Flags=0

● Be wary of using nearly all GPU memory

● May not be enough room for DISCARD operations

● Spin-locking on query results—that’s definitely
a CPU-GPU Sync Point, regardless of API.

gameworks.nvidia.com

www.gameworks.nvidia.com

Fixing CPU-GPU Sync Points (cont’d)

● Use NO_OVERWRITE in combination with
GPU fences (or event queries) to ensure
safe, contention-free updates

● Defer Query resolution until at least one
frame later

● Use PBOs to do asynchronous readbacks

● And wait “awhile” before mapping.

gameworks.nvidia.com

www.gameworks.nvidia.com

Summary

CPU-GPU Sync Points. Not even one.

gameworks.nvidia.com

www.gameworks.nvidia.com

Appendix

gameworks.nvidia.com

www.gameworks.nvidia.com

GPU Timestamp Queries

● Tells you the GPU-time when preceeding
operations have completed—including
writes to the FB.

● Two timestamp queries adjacent in the
pushbuffer will have an elapsed time of
1/(Clock Frequency). (Very, very small).

gameworks.nvidia.com

www.gameworks.nvidia.com

Problematic D3D9 Entry Points

● Create*^

● IDirect3DQuery9::GetData

● *::Lock

● *::LockRect

● Present

^ Rare, but possible

gameworks.nvidia.com

www.gameworks.nvidia.com

Problematic D3D11 Entry Points

● ID3D11Device::CreateBuffer*^

● ID3D11Device::CreateTexture*^

● ID3D11DeviceContext::Map

● ID3D11DeviceContext::GetData

● IDXGISwapChain::Present

^ Rare, but possible

gameworks.nvidia.com

www.gameworks.nvidia.com

Problematic GL Entry Points

● glBufferData^

● glBufferSubData^

● glClientWaitSync

● glFinish

^ Rare, but possible

gameworks.nvidia.com

www.gameworks.nvidia.com

Problematic GL Entry Points

● glGetQueryResult

● glMap*

● glTexImage*^

● glTexSubImage*^

● SwapBuffers

^ Rare, but possible

gameworks.nvidia.com

