
Hello, my name is Richard Tonge and today I’m going to talk 
about rigid body dynamics for games. 

Gino just talked about how to detect if collision has occurred, 
and I’m going to talk about what to do to stop solid things 
going through each other. 
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In previous years, the audience of this tutorial has included a 
range of people, from those who are learning games physics 
for the first time to people who have written complete physics 
engines. 

There is a common rigid body solver algorithm that’s been 
described many times before at GDC. When I was writing the 
presentation, I tried to include enough material for beginners 
to make the description of this algorithm accessible, the 
algorithm itself, and also talk about some recent 
developments for people who have seen the algorithm before. 
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Humans like blowing stuff up 

 

The background of this slide is our art gallery demo that is 
fully destructible using rigid body simulation. The entire 
simulation is running on the GPU and this allows us to 
simulate thousands of debris fragments with a wide range of 
sizes. 

 

We showed it at GDC last year and we are showing an 
improved version this year. 
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For the previous demo, the artist had to author how they 
wanted the floor, walls, windows etc to crack. This is our new 
demo which calculates the fracture automatically at runtime. 
This means that you can put destruction into games without 
generating too much extra work for the artists. 

Again the simulation is running entirely on the GPU (except for 
the part which splits the mesh, which is on the CPU currently). 
As the fracture is calculated algorithmically, there is in 
principle no limit to the number of times you can split the 
pieces, although you will eventually run out of memory. It 
shows very small destructed pieces interacting stably with 
large undestructed pieces, showing that you can run 
simulations with a wide range of object sizes entirely on the 
GPU. 
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Definition of rigid body coordinates 

In graphics APIs like OpenGL and DirectX, it’s easy to animate rigid 
objects. Why? It’s because we can specify mesh vertices relative to 
a local coordinate frame. So when we render, we don’t have to 
specify the world coordinate of each vertex each frame, we just 
change the transformation matrix to move the mesh in the scene. 

 

Ok, so let’s talk about using rigid body physics to move the mesh 
around the scene. So the first concept I’d like to introduce is the 
center of mass. In graphics, it doesn’t usually matter where the 
artist places the origin of the mesh. In rigid body physics, the 
center of mass of a mesh has special significance, so to keep things 
simple, let’s assume that the artist has placed the origin of the 
mesh at the center of mass. (If this isn’t true, we can just store an 
offset). So a rigid body engine modifies the mesh’s transformation 
matrix each frame to move the center of mass around the scene, 
and the rest of the mesh follows. Also, the physics engine can rotate 
the mesh around the center of mass by changing the orientation 
part of the transformation matrix. 

 

The transformation matrix can be efficiently stored as a position and 
a quaternion, a 7D vector. We call this 7D vector “the pose of the 
mesh in rigid body coordinates”. I’m going to use the letter x to 
represent the rigid body pose in this presentation. 

 

 

 

5 



Velocities and impulses in rigid body coordinates 

We can express other things in rigid body coordinates, like 
velocities and impulses. Just as the rigid body pose uniquely 
determines the position of every vertex of the body, the rigid 
body velocity (the linear and angular velocity of the center of 
mass) determines the velocity of every vertex (and also every 
other point) of the rigid body. 

We’ll show how to calculate this in a minute.  
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Also, if we want to apply an impulse to a vertex (or other 
point on the rigid body), we can calculate the equivalent rigid 
body impulse and apply the impulse by changing the rigid 
body velocity. 
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So a rigid body engine is just something that updates a pose 
and velocity in rigid body coordinates each frame, according to 
some contacts supplied by a collision detection engine. 

This slide shows the highest level representation of a rigid 
body engine. Over the next few slides we’ll make the diagram 
more detailed. 
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The simplest rigid body physics engine just moves a single 
body through the air without collisions. 

  

You’ll notice that there isn’t any math in these boxes, we’ll get 
to that in a moment. 

 

This box shows how we transform the rigid body coordinates 
each frame. 

First we update the velocity by applying gravity to it. Then we 
use the new velocity to update the pose. 
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The next simplest situation we could consider is a body 
colliding with the ground at a single point of contact. 

The contact here is shown in red, and the picture on the right 
shows what we want to happen. To keep things simple we’re 
going to look at an inelastic contact, so we’re imagining that 
the box and slope are so rigid that the box won’t bounce when 
it hits the slope. 
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We’re going to prevent bodies penetrating each other by 
applying impulses to change their velocities. 

So when the box hits the slope, we apply an impulse to 
counteract the effect of gravity and make the velocity parallel 
with the slope. Making the velocity parallel to the slope will 
cause the body to slide down the slope in future frames. 

Another way of saying this is that we are “projecting the 
unconstrained velocity onto the space of allowable velocities”. 

This is called solving the contact constraint at the velocity-
impulse level. Collisions will also require positions and 
rotations to be changed slightly, but we’ll get to that in a 
moment. 
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Why don’t we solve at the force-acceleration level? 

Friction is much better behaved at the impulse-velocity level 
and it allows us to treat resting contact in the same way as 
colliding contact. 
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We want to find a new velocity that will cause the body to 
slide down the slope instead of into penetration.  The first 
picture shows the unconstrained velocity due to gravity in rigid 
body coordinates. Recall from a few slides earlier that the 
velocity of the center of mass determines the velocity of every 
point on the rigid body. We show exactly how later. In this 
case, the velocity at the contact is the same as the center of 
mass because the body is not rotating. 

We want to eliminate the component of the velocity that is 
pulling the box into penetration, so first we need to the 
magnitude of the velocity component we want to eliminate. 
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Once we know the direction and magnitude of the velocity 
component we want to eliminate, we can calculate the impulse 
required that will eliminate it. 
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Recall that earlier we said that we can apply an impulse 
anywhere on a rigid body by calculating the equivalent 
impulse in rigid body coordinates and applying that. The rigid 
body impulse is shown in the right hand picture. Notice how 
applying the impulse off-center causes a rotation as well as a 
linear impulse. 
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When we apply the impulse to the unconstrained velocity, the 
linear part of the new velocity aligns with the slope, just as we 
had forseen. 
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Now all we need to do is apply the velocity to update the 
position. The picture shows the box rotated so that it is 
parallel with the ground. This will probably take many frames, 
and at some point we are going to get more contacts from the 
collision detection to stop it rotating further through the slope. 
We’ll talk about multiple contacts later. 
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Putting all the previous steps together, this is what we get. 

 

• Apply Gravity 

• Calculate the relative velocity at the contact point (along the 
contact normal) 

• Calculate the impulse to apply at this point that would make 
this relative velocity zero 

• Calculate this impulse in rigid body coordinates 

• Apply this rigid body impulse to the rigid body velocity 

• Update the rigid body pose using the rigid body velocity 
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Now we’ll show how to implement each box in the diagram 
using math. 

 

The simple update rules for applying gravity and velocity are 
called Euler integration.  For people who know about 
numerical integration already, from these isolated blocks it 
may look like we are using explicit Euler, which is only 
conditionally stable. Overall though, we are doing a semi-
implicit Euler which is unconditionally stable. See the time-
stepping papers by Anitescu for more information on this. 

 

There are more complicated integrators available, but they 
don’t do well in systems with discontinuous changes like rigid 
body impacts. Also, even though these integrators are more 
accurate, in games we generally value stability and speed 
more than accuracy. 
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The velocity application in the last slide contains a slight 
problem. I wrote it the way I think about it, but it’s not 
actually true. 

 

The rigid body pose, x, is a 7D vector, a position and a 
quaternion, whereas the rigid body velocity, v is a 6D vector. 
We can’t add these things together.  

 

So how is it done? 

The linear part is just the same as in the last slide, but to 
apply the angular velocity to the quaternion requires the 
formulae on this slide. 

20 



This is how rigid body impulses are applied. In particle 
dynamics, mass is a single number, but here M is a 6*6 
matrix. The first 3 diagonal elements are just the mass, but 
the bottom right 3*3 block is something called the inertia 
tensor. Just as the mass specifies how hard it is to move a 
body linearly, the inertia specifies how hard it is to rotate a 
body around its center of mass. There are standard formula 
for the inertia of primitives like cubes, etc, a standard way of 
calculating the inertia of a triangle mesh (with uniform 
density), and a standard way of calculating the inertia of 
rigidly attached components when you know the inertia of 
each component. I usually just look that stuff up on the 
internet. 
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Ok, this seems like a bit of a cheat, saying that v_in is 
transformed to v_rel by multiplying by matrix J because it is 
not much more informative than just drawing a black box. I’ll 
show what J is in a moment though. What is interesting 
though is that to convert an impulse at a point to a rigid body 
impulse you multiply by the transpose of J. Erin covered why 
this is the case in one of his previous GDC presentations. 
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The red arrow is the collision normal provided by the collision 
detection system, and r shows the position of the contact 
point relative to the center of mass. In high school I 
remember learning that torque is force multiplied by the 
perpendicular distance, and the cross product (r x n) here is 
like the 3D equivalent of that. 
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There is just one box on the diagram that we have not yet 
converted to math, the one that takes the relative velocity at 
the contact point and works out how much impulse to apply at 
the point to eliminate it. 

I said earlier that overall we will make the method semi 
implicit to ensure that it is unconditionally stable, and this is 
where we’re going to achieve that. 

The way we do this is to ensure that the contact constraint is 
enforced at the end of the timestep, not at the start. So even 
though we don’t know the impulse (lambda) yet, we’ll 
calculate what the velocity will be at the end of the timestep in 
terms of it, calculate the relative velocity in terms of that, 
then solve to find out what the impulse should be. 

 

First, what is the final velocity in terms of v_rel and lambda 

 

V_new = V_rel + M^{-1}J^T lambda 

 

We want the relative velocity to be zero at the end of the 
timestep 

So we want J v_new = 0 

J v_new = J V_rel + JM^{-1}J^T lambda = 0 

 
24 



Putting it all together, this is what our diagram looks like in 
code. 
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Multiple contact points 

This is where things start getting tricky 

Applying an impulse at one contact point can affect the 
velocity at many other contact points 

So we need to find a set of impulses, one for each contact so 
that when they are applied simultaneously, the velocity 
constraints are satisfied simultaneously (taking into account 
all the coupling between the contacts) 
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Previous presentations have just presented the multiple 
contact algorithm (which is almost the same as the previous 
one), but today I’m going to do things a bit differently. I’m 
first going to show what the high level model the algorithm 
solves is, then I’m going to show the algorithm. 
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Why am I doing this to you? You just need to know the final 
algorithm so that you can code it, right? 

My experience of writing solvers is that inevitably there is 
some jitter or other undesirable behavior the first time you 
run them. At that point you think, hmm, is this a bug, or is it 
a fundamental problem? How do I know that applying all these 
impulses locally is going to give a globally stable solution? 

So this is the advantage to knowing the model that you are 
approximately solving, once you know what the perfect 
solution should be you can measure how close your 
approximate solution is to it. Also, when you know the model 
you can prove (or read a proof that was written already) that 
your approximate algorithm converges to it, and then if 
something weird happens you can be confident that it is just a 
bug in your code and not some fundamental math problem. 

Also, many people have written solver for similar models 
outside of games, and if you know the model you have 
something to pattern match against when reading papers from 
other fields. 
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To build the multiple contact J matrix we just introduce an 
extra row per contact, and each row is built in the same way 
as in the single contact case. 
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All the previous operations work with the new J, except now 
the result is a vector with one element per contact. 
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At this point you might be thinking that the multiple contact 
problem is a matrix equation that could be solved using a 
standard linear solver algorithm. Is this right? 
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No. 

Instead of being a linear system, what we have is something 
else called a linear complementarity problem (LCP). Don’t 
worry, I’ll explain what the expressions on this slide mean in a 
moment. 
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But first, why is it not a linear system? The answer is that 
contacts can break. 
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Here we have two pens sitting on the edge of a table. The 
circle represents the center of mass. The collision detection 
system has generated two contacts in each case, shown by 
the red arrows. 

Intuitively, the pen on the left should stay on the table, and 
the one on the right should fall off the table. As the pen falls 
off the table, the leftmost contact should stop applying force. 
We call this a breaking contact. 
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Suppose we model the contact impulses as a linear system.  

This means is that we would solve a (matrix) equation to 
calculate the impulses that when applied simultaneously would 
set all the relative velocities to zero. 

The problem is that the only way the solver can achieve this in 
the right hand picture is to apply an attractive force on the left 
contact. This is shown by the downward green arrow. The 
attractive force and zero relative velocity mean that the bar 
won’t fall. 

 

So a linear system can give attractive impulses, which is fine 
for simulating a pen that is jointed to the table, or if the table 
and pen are magnetic, but that’s not what we have here. 
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How do we specify what we do want to happen in terms of 
impulses and relative velocities? 

We’ve seen that for contacts, we want impulses to be non 
attractive (non negative), and we want relative velocities to be 
zero or separating (also non negative). 

There is one other condition that isn’t obvious from this 
example, as soon as a contact is separating, no more force 
impulse should be applied. A formal way of saying this is that 
constraints must do no work, which is a law that has many 
names, like Gauss’ principle of least constraint, D’alembert’s 
principle and the principle of virtual work. 

 

This slides is just these three conditions  written in math. They 
are called the Signorini conditions after Antonio Signorini who 
first formalized them. Here is a picture of him. 
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The meaning of this expression is exactly the same as the 
three Signorini conditions from the previous slide, it’s just a 
more compact way of writing them. 

The upside down T means “is complementary to” and velocity 
is complementary to impulse has the same meaning as the 
third Signorini condition. 
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So this is our final model. The first line is Newton’s second law 
of motion, the second line is the definition of velocity, and the 
third line is the Signorini condition from the previous slide. 
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Originally I didn’t have the next three slides in the 
presentation, but in the rehearsal somebody pointed out that I 
didn’t specify what LCP means or where it comes from. So 
here it is. 

 

On the left we have this ideallized model which shows with 
infinite resolution how position and velocity vary over time, 
between collisions these graphs of these things are perfectly 
smooth. There is an example of such a function of time on the 
bottom left. 

It is not possible to solve this model exactly in all interesting 
cases, and we only need to know the answer once per frame 
anyway. So we cut time into frame sized chunks and 
approximate the functions as straight lines between them. 
This is called doing a time discretization of the model. So you 
can see that we’ve just replaced acceleration with (v_new-
v_old)/h etc. 

 

39 



We want to calculate impulses (lambda), apply them and then 
update position, so we can rearrange the discretized model to 
show us how to do this. The result is shown on the right. 
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In the last slide we rearranged to move a bunch of stuff into 
the line that has the upside down T, the complementarity 
condition. 

There is a shorthand way of writing this, the second line on 
this slide. So this is our LCP, or linear complementarity 
problem. It is linear because in this discretized model relative 
velocities are linear functions of the impulses applied at the 
points (lambda). 
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So we went through all that so that I can say: what we are 
solving is not a linear system, it is an LCP. 

This unfortunately means that any existing linear system 
solvers that you might know about are not going to work. 
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The good news though is that there is something that does 
solve this LCP model, and it is almost exactly the same as the 
simple one contact algorithm we talked about earlier. 
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So all we do is apply the one contact algorithm to each 
contact in sequence, and then iterate through the whole 
contact list a small number of times. The default number of 
times in PhysX is four. 
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The question though is how we ensure that the Signorini 
condition is met so that we can make sure that our objects 
don’t all look like magnets. 

The simplest thing you might think of is just take each impulse 
you apply at each iteration and set it to zero if it is negative. 
Remember that negative impulses are attractive impulses and 
positive impulses are repulsive impulses. 
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Ok, the problem is that this  doesn’t work, here is why. 

 

We will need to iterate over all the contacts many times to 
converge to the correct solution. The default number of 
iterations in PhysX is four. 

What the model tells us is that it is the total impulse applied in 
the frame that must obey the Signorini conditions, not the 
individual impulses. 

These means that we need to keep an impulse accumulator 
for each contact and clamp that each frame, not the impulse 
from the current iteration. 

 

Suppose that on the first iteration we apply too much impulse 
at a contact. If we clamped the impulse applied on each 
iteration, then we would never be able a negative correction to 
reduce the impulse that was too large. 
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So instead, all we do is keep accumulators that track how 
much impulse was applied to each contact this frame and 
clamp those. 
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So here is the final algorithm in code. 
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Earlier I said that we could mainly think about using impulses 
to correct the velocities. 

As our timestep size is fixed we can’t completely ignore 
position errors though. 

The middle diagram shows what might happen if we apply the 
corrected velocity with a fixed timestep. You can see here that 
there is both a linear position error and that the box has 
rotated too much. 

So we need a way to pop the box out of the slope and rotate it 
to the correct orientation, as shown in the right hand diagram. 
This process is called position projection. 
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The collision detection tells us how much penetration has 
occurred, here we represent it with the letter Phi. We will 
decide to remove a certain proportion of this position error 
each frame. It is better to just remove a proportion of it each 
frame rather than all of it, because that will ensure that the 
correction happens smoothly and avoid one cause of jitter. 
PhysX is hard coded to remove 80% of the penetration each 
frame. Earlier we showed that Jv gives the realtive velocity 
that we want to zero (or allow to be positive). All we do is add 
80% * Phi / h to this.  Ok, that’s not exactly how we do it in 
PhysX, Erin’s previous talks cover other ways to do this. 
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That completes the description of the widely used PGS/SI 
algorithm for rigid body contact. 

In the last section I’m going to share with you four extensions 
to it that I find interesting. I don’t have much time left, but 
I’ve included a reference you can use to search the web for 
more information. 
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I didn’t say anything about friction so far. A good friction 
model is that the more force an object is exerting on a 
surface, the harder you need to push it to get it moving across 
the surface. So heavy objects sitting on the ground are harder 
to push than light ones. Also, you push and push and the 
thing doesn’t move and you push a bit more and suddenly the 
thing starts moving. This is called the transition from sticking 
to sliding. 

The standard model of this is Coulomb friction, and it is 
represented by a cone. The up axis is the force exerted on the 
surface, and the two other axes are the forces in the tangent 
plane of the contact. So in the coulomb model you calculate 
how much tangent force would be needed to stop motion in 
the plane. If the force is within the friction cone, then you 
apply the force and the object doesn’t move. So as you push 
and push and object, the force the surface is using to resist 
you is getting closer and closer to the surface of the cone. As 
soon as it gets to the surface of the cone, it is clamped so it 
can’t resist all your force and the object suddenly starts 
moving. 

 

In the Coulomb friction model, the amount that the surface is 
allowed to resist you is the same whatever direction you try to 
push it in the plane, this is because the cross sections of the 
cone are smooth circles. Some things don’t behave like this, 
for example at the grocery store you sometimes get a cart 
with a dodgy wheel that is happy to move in some directions 
but not others. 52 



In the Coulomb friction model, the amount that the surface is 
allowed to resist you is the same whatever direction you try to 
push it in the plane, this is because the cross sections of the 
cone are smooth circles. Some things don’t behave like this, 
for example at the grocery store you sometimes get a cart 
with a dodgy wheel that is happy to move in some directions 
but not others. 

 

Anyway, although the smooth coulomb cone is desirable, until 
recently we had to discretize it into a polyhedral cone or a box 
to guarantee that the solver would converge. So video game 
solvers behaved a bit more like grocery store carts than we 
would like. 

So the simplest way you might try to implement smooth 
Coulomb friction is to calculate the tangent force needed to 
zero the velocity in the plane each iteration and just clamp 
(project) it to the smooth cone. I tried this myself many years 
ago, and found situations where it caused the solver to not 
converge. In 2008, Anitescu and his collaborators worked out 
that you could make this simple method work just by adding a 
small relaxation term in the same place we added the position 
projection term. It does give a small unwanted vertical 
motion, but you can make this as small as you like by 
modifying the parameters. 
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At the moment both NVIDIA and AMD are interested in 
making all this run on a GPU, and that’s what I spend all my 
days doing. It is GPU computation that enabled the fracture 
demos presented at the start. Takahiro Harada from AMD is 
going to talk more about GPU solvers this afternoon. 

Here are some references from both companies that describe 
some of the work done. 

 

The diagram here shows one of the fundamental problems of 
moving the algorithm described in this talk directly to the 
GPU. 

It shows 5 boxes sitting on the ground in a truncated pyramid 
kind of stack. There are 7 contacts, labelled with numbers. 

Ideally we’d like to use 7 threads on the GPU to calculate the 
impulses in parallel. Unfortnately, if we do this then some 
velocity updates will get lost. 

For example, thread (contact) three and thread four will both 
try to update body d, and only one of their writes can win. If 
updates are lost like this then the algorithm generally won’t 
converge. 
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So what we have to do is to “color” the contacts into groups (colors) 
for which no body is affect by more than one contact in each color. 

We then can process the colors sequentially, but process the 
contacts within each color in parallel. 

The problem with that is that there is much less parallelism 
available. In this example we can use at most 3 threads in parallel, 
when we really want to use 7. The total time is now going to be 
multiplied by the number of colors. Also, in larger examples you find 
that the first few colors have quite a large proportion of the 
constraints, but after that there are lots of colors with hardly any 
constraints. This means that the GPU is mostly idle for almost all of 
the colors. 

Next we’ll look at a couple of possible solutions to this. 

55 



We could apply impulse at all contacts at all iterations, using 
the maximum number of threads, just averaging contributions 
of impulses for shared bodies. If we try to apply the maximum 
relative velocity killing impulse at each contact (like we did in 
the CPU algorithm earlier) then the contacts will just fight 
each other and the algorithm will either converge slowly or not 
at all. 

The paper referenced here contains an algorithm called 
Projected Gradient Descent (equation 10 in the paper) that 
shows how to calculate the maximum safe impulse to apply at 
each contact to ensure convergence. Convergence is still 
pretty slow though. 
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I described earlier the difference between a linear systems 
and an LCP. 

You may have noticed that the CPU LCP solver described 
earlier is similar to a linear system solver called Gauss-Seidel. 
In fact the algorithm I presented is called Projected Gauss 
Seidel. So you might be wondering if we can take other 
popular linear system solvers (like conjugate gradients) and 
turn them into LCP solvers by adding projection (clamping) to 
them. 

Unfortunately, with solvers like Conjugate Gradients it is not 
as easy to do as with Gauss-Seidel (while maintaining 
convergence). Ideally we want a method like Conjugate 
Gradients that solves our symmetric LCP that has a proof that 
it will always converge. The reason we need a proof is because 
in a game anything can happen, and we don’t want to keep 
adding hacks to our solver to make it converge as the artists 
add more things to the game or as the player finds new things 
to do. 

There are a few projected Conjugate Gradient algorithms out 
there, but this one by Dostal is the first one that I’ve seen 
that has a convergence proof. 
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Ok, so what did I talk about today? 

 

First I showed how to convert velocities and impulses to and 
from rigid body coordinates. 

then I showed a simple RB solver for situations without 
contacts, 

then I showed how to do one contact, 

then I did a brief detour into what the model is, 

then I showed how to do multiple contacts in a way that was 
almost the same as the method for one contact, 

then I showed some extensions that I find interesting. 

 

Thanks to Erin Catto, Erwin Coumans, the NVIDIA PhysX guys, 
the MathEngine guys and all the other people who worked on 
this stuff with (or, erm, alongside) us. 
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Ta very much. 
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