
Mastering DirectX 11
with Unity

Renaldas Zioma
Simon Green

Thursday, March 15, 2012

Overview

Unity DirectX 11 Renderer
Renaldas Zioma, Unity Technologies
Twitter: @__ReJ__

New features and DirectX 11 Effects
Simon Green, NVIDIA

Thursday, March 15, 2012

New Unity Features

Unity DirectX 11 Renderer
Unity “Physically Based” shaders
Modified lighting pipeline
Catmull-Clark subdivision
Blend shapes, PointCache (PC2) support
Reflection (cubemaps, quads) probes
Post processing
Incremental lightmap baking

Thursday, March 15, 2012
Hello, this is a short list of main features that we have developed recently. Iʼll mostly talk about Physically Based shaders and Catmull-Clark subdivision.

Unity DirectX 11

Compute shader
Tessellation
3D textures

other technologies from 2002 that we added: single channel float
textures!

Thursday, March 15, 2012
We have implemented DirectX11 renderer in Unity. Main highlights are compute shaders and tesselation. We finally bothered to implement 3D texture support
too.

Compute example - 1M Particles in Unity

particleCS.SetBuffer(0, "posBuffer", posBuffer);
particleCS.SetBuffer(0, "velBuffer", velBuffer);
particleCS.SetFloat("dt", Time.deltaTime);
...
particleCS.Dispatch(0, size, 1, 1);

Thursday, March 15, 2012
Compute shader API is really simple and can be accessed directly from C#/Javascript.

Unity “Physically Based” shader

Thursday, March 15, 2012

Unity “Physically Based” shader

Inspired by Mental Ray “Architectural” (MIA) shaders
good enough for high quality offline rendering
most hard-surface materials (metal, wood, glass, clay)

Familiar to CG / non-game artists
Physically based

reduces number of parameters
Energy conserving

(kinda) impossible to setup material breaking laws of physics
Predictable results

avoid “hacks”
intuitive

Just 1 shader for almost everything
Thursday, March 15, 2012
It is important to get shading and lighting foundation right. We can’t really fix broken image with shiny posts.
Modern hardware provides abundant power (esp ALU, texfetch) which can be used for physically based shading. I believe
that by avoiding ad-hoc solutions in shading we can achieve more intuitive and predictable workflow for artists.

As an inspiration we have picked MR Architectural shader library - mainly because of familiarity to CG artists, wide range of
supported materials while keeping code kernel small and simple and energy conserving.

Our shaders primarily attempts to be physically accurate by keeping the track of the light distribution - light is either
absorbed, reflected or transmitted further, hence no light magically (dis)appears.

Unity “Physically Based” shader

Diffuse: Oren-Nayar
1 parameter: roughness
Lambert (roughness == 0)
different approximations

Thursday, March 15, 2012
Oren-Nayar allows rough and powdery surfaces - brick, concrete, clay. Moon surface is another good example of non-
Lambertian scattering. OrenNayar can also be used for clothing materials such as velvet. And when roughness is 0, Oren-
Nayar degenerates into Lambert.

There are several Oren-Nayar approximations varying in cost and quality.

Specular: Cook-Torrance
2 parameters: roughness (glosiness), reflectivity
energy conserving
physically based

micro-facet theory

Unity “Physically Based” shader

Thursday, March 15, 2012
Cook-Torrance lighting is targeted at metals and plastics and allows to represent specular reflectivity for rough surfaces.
Unlike Phong, Cook-Torrance proves accurate way of computing the color of the specular term – an approach based more
on physics than pure mathematics.

Fresnel curve - how reflectivity depends on view angle
2 parameters: facing camera (at 0 degrees), at 90 degrees to camera
interpolated using Schlick approximation: lerp (Reflat0, Reflat90, (N.V)5)
called “BRDF” in MIA

Unity “Physically Based” shaders

Thursday, March 15, 2012
View dependent reflectivity - “Fresnel curve” is a simple way to simulate full Bi-directional Reflectance Distribution
Function.

Energy conservation

Diffuse + Reflection (+ Refraction) <= 1
1st law of thermodynamics

Reflectivity takes energy from both Diffuse and Transparency
adding reflectivity will reduce diffuse energy
100% reflective will never be diffuse or transparent!

Transparency takes energy from Diffuse
standard Alpha blending

Both Cook-Torrance and Oren-Nayar are energy conserving
unlike original Blinn-Phong
intense highlights are narrow, wide highlights are less intense

Thursday, March 15, 2012
Energy conservation - one of the most important features of the material.
No additional energy is created and the incoming light energy is properly distributed to the diffuse, reflection and refraction
components in a way that maintains the 1st law of thermodynamics.

Adding more reflectivity (as energy must be taken from somewhere) the diffuse level and the transparency will be reduced
automatically. Adding transparency will reduce diffuse level.

Energy conservation applies to specular highlight of CookTorrance making intense highlights narrow and wide highlights less
intense. Analogous behavior is achieved with modified energy conserving BlinnPhong.

Reflectivity takes energy from Diffuse and
Transparency

Adding reflectivity will reduce diffuse energy

Thursday, March 15, 2012
Apple Terminator

Reflectivity varies from 0 on the left to 1 on the right

Reflectivity takes energy from Diffuse and
Transparency

100% reflective will never be diffuse or transparent!

Transparency

R
eflectivity

Thursday, March 15, 2012
Reflectivity varies from 0.1 on the top to 0.7 on the bottom
Transparency varies from 0.1 on the left to 0.8 on the right

Blurry reflections

Thursday, March 15, 2012

Blurry reflections

Low quality blur by sampling different miplevels (LODbias)
DX9/GL requires fixup across cubemap edges
does not work for planar reflections
only Box filtering

Increase blur quality by sampling multiple times (1..8)
Bend surface normal

emulates micro-facets of the rough surface
Reflect view direction against “bent” normal
Can simulate various normal distributions N N’

Thursday, March 15, 2012
DirectX11 saves headache of fixing up pixels when sampling on the edge of the cubemap.
Using lower miplevels doesn’t work well for planar reflections as they are usually rendered in screen space. Blurring should
offset rays along the reflection vector, but not in screen space.

Multiple jittered samples could be used to improve quality of the blurry reflections beyond box filtering.

Combining 2 normal maps

Artists wanted detail normal maps
Blending 2 normal maps just “flattens” both
Want to get results as if blending 2 heightmaps
“Warp” 2nd normal map

using normals from the 1st normal map:

 float3x3 nBasis = float3x3(
 float3 (n1.z, n1.x,-n1.y),
 float3 (n1.x, n1.z,-n1.y),
 float3 (n1.x, n1.y, n1.z));
 n = normalize (n2.x*nBasis[0] + n2.y*nBasis[1] + n2.z*nBasis[2]);

Thursday, March 15, 2012

Without normals

Thursday, March 15, 2012

Detail normals

Thursday, March 15, 2012

Combined normals

Thursday, March 15, 2012

Optimizing “Physically Based” shaders

Small code kernel - easy to optimize
same code for Skin and Car shading too

Costs
90 ALU instructions on average
270 ALU instructions at max
up to 24 texture fetches

Permutations - pick depending on parameter values
if diffuse roughness = 0, use Lambert instead of OrenNayar
different OrenNayar approximations
glossiness value affects number of reflection texture samples
etc

Thursday, March 15, 2012

Catmull-Clark Subdivision

Thursday, March 15, 2012

Catmull-Clark Subdivision

Standard in modeling and offline rendering
Does NOT map directly to DirectX11 tessellation pipeline
PN-Triangles or Phong Tesselation does not exactly match
results from modeling tools
Ongoing research on Catmull-Clark approximation on GPU

requires complex mesh preprocessing
or too expensive for required quality

Thursday, March 15, 2012

Catmull-Clark Subdivision

Instead we perform 1st subdivision level on CPU
most visually important subd level

7.4M verts/sec
per single core on Core i7 2600K
plain C implementation
not fast, but works!

Higher subd levels on GPU using Phong Tessellation
Future plan: move Catmull-Clark code to COMPUTE shader

otherwise bandwidth bound due to CPU -> GPU uploads

Thursday, March 15, 2012
We went for a pragmatic approach: all characters would be modelled with subdivision surfaces like usual in offline CG. Then
at runtime, we perform one level of Catmull-Clark subdivision - this is enough to get the surface be approximately the
right shape. Subdivision is performed after animation, mesh skinning and blend shapes (morph targets) are calculated, and
it computes new vertex positions, normals and tangent vectors.

In our case the initial mesh is already quite dense to support animation, and after one level of Catmull-Clark subdivision
the shape is close to the limit surface.

Global Illumination

Unity supports lightmap baking using Beast
Only indirect lighting is stored in lightmaps
Light probes

lighting for dynamic objects
Reflection probes

cubemaps (infinite distance reflections)
quads (local reflections)

Thursday, March 15, 2012

Light probes - tetrahedras

Thursday, March 15, 2012

Ambient occlusion

Horizon Based Ambient Occlusion (HBAO)
developed by NVIDIA

Ambient Occlusion should NOT affect direct illumination
by definition!
otherwise gets dirty look

Calculate SSAO early, feed results into pixel shaders
min (bakedAO, objectAO, SSAO)
apply only to indirect lightmap, light probes and reflections

Thursday, March 15, 2012
Ambient occlusion should affect only indirect (ambient) illumination. Direct illumination should be affected only by direct
occlusion (shadowmaps).

Old Unity SSAO

Thursday, March 15, 2012
Comparison between old Unity SSAO and new HBAO algorithms

HBAO

Thursday, March 15, 2012
Comparison between old Unity SSAO and new HBAO algorithms

HBAO

Thursday, March 15, 2012

Skin rendering

Based on the same code as hard-surface shader
But in multiple layers
“Double” specular
Texture space diffusion

Thursday, March 15, 2012
Mulitple layers with varying blur amounts
One specular layer is used to mask second specular layer - artistic decision

Thursday, March 15, 2012

Skin rendering

Based on the same code as hard-surface shader
But in multiple layers
“Double” specular
Texture space diffusion

Thursday, March 15, 2012
eyes could look better ;(

DirectX 11 Effects

APEX Destruction
Hair pipeline
Volumetric explosions
Motion blur

Thursday, March 15, 2012

APEX Destruction

Unity already uses PhysX
Rigid body simulation

APEX Destruction enables real-time destruction effects
Fracturing objects
Breaking walls, smashing windows etc.

NVIDIA integrated APEX runtime into Unity

Thursday, March 15, 2012

NVIDIA APEX – Scalable Dynamics Framework

Vegetation

Turbulence

Destruction

Clothing

Thursday, March 15, 2012
APEX is a scalable Dynamics Framework (aka Adaptive Physics EXtensions)

Extendible framework: the building blocks are modules that solve certain problems. Their runtime complexity varies, but a common to all is attention to
ease of authoring. Apex is artist-focused.

Many modules are currently available, or will be soon. Destruction and Clothing are ready now, in our 0.9 release, as well as particles and forcefields.
Vegetation (which integrates with SpeedTree) and Turbulence will be available soon.

APEX Destruction

OBJ FBX BMP

Mesh data & Fracture Map

APX

PhysXLab Core

D
es

tru
ct

io
n

PhysX SDKRenderer

APEX Core

APEX asset file

USER

Thursday, March 15, 2012
Now we’ll see how to author destructibles.

Destruction is authored in PhysXLab. PhysXLab is a standalone tool that allows artists to fracture arbitrary objects and immediately try them
out within the tool.

You can import for example meshes from Alias OBJ or Autodesk FBX format files, then fracture it using a variety of methods. The result is
stored in an Destructible Asset file (pda). This includes the fractured graphics mesh as well as references to resources such as materials and
particle systems.

The tool allows you to select the internal material, used for the newly-generated internal faces.

What you see is what you get – the APEX file output is used for simulation preview within the tool, as well as the runtime loadable asset.
There’s no difference.

APEX Destruction Demo

Thursday, March 15, 2012

Hair Pipeline

Hair and fur is the next big challenge for game characters
as animation and skin shading gets better, low quality hair more obvious

Unity hair system was designed to be similar as possible to off-
line systems

Hair styles (groom) can be modeled in Softimage XSI / Maya / MAX
Exported to Unity using PC2 point cache format
Rendered using DirectX 11 tessellation

Generation of render hair geometry done entirely in hardware
Geometry amplification
GeForce GTX 580 tessellation hardware is very fast

Thursday, March 15, 2012

Early DirectX 11 Hair Test

Thursday, March 15, 2012

Hair Styling

Hair defined by two items:
Emitter mesh
Guide hairs

defined at vertices of each triangle in emitter mesh
typically 15 control vertices per guide hair
stored in DirectX 11 structured buffer

Thursday, March 15, 2012

Guide Hair Curves and Emitter Mesh

Thursday, March 15, 2012

Generated Render Hairs

Thursday, March 15, 2012

Hair using DirectX 11 Tessellation

Uses “isoline” domain
Hardware can generate up to 64 isolines / patch, with up to 64 verts / line

Domain shader
Generates render hairs over surface of each triangle

chooses a random position on triangle (using integer hash function)
render hairs interpolated between guide hairs using barycentric coords

Evaluates position on each curve using B-Spline
Number of curves / tri and vertices/curve can be varied

supports LOD and back-face culling
Use 3D noise based on position to add detail, wind effects

Geometry shader
Expands line strips to camera-facing triangle strips

Thursday, March 15, 2012
Using splines allows actual number of vertices generated along curve to be varied

Hair

Thursday, March 15, 2012
after NVIDIA party

Add Noise

Thursday, March 15, 2012

Clumping

Thursday, March 15, 2012

Hair Shading

System supports thin geometric hair
or wide textured strips with images of multiple hairs

8x multisample anti-aliasing works surprisingly well
use Alpha-To-Coverage with added random dithering
gives order independent transparency without blending
transparency super-sampling using shader coverage output would also
possible, but expensive
shader includes fading at root and tip

Use Kajiya-Kay anisotropic shading model
supports self-shadowing
fake rim-lighting effect

Thursday, March 15, 2012

Hair UI

Thursday, March 15, 2012

Not just for hair!

Thursday, March 15, 2012
Supports fur mode, doesn’t use guide hairs, fur generated based on mesh tangent and normal.

Explosions

Explosions are a common element in modern video games!

Thursday, March 15, 2012

Inspiration – FumeFX

Thursday, March 15, 2012

Explosion Approaches

Particle system
Can look good, especially with pre-rendered sprites
But hard to get fireball look
Sprites can look flat, especially with a moving camera

Fluid simulation
Possible in DirectX 11, but expensive
Hard for artists to control

Procedural techniques
Practical on today’s PC hardware

Thursday, March 15, 2012

Great Presentation from GDC 2005

Thursday, March 15, 2012

!!

Thursday, March 15, 2012

Distance Fields

Aka Level Sets
Popular in demo scene
Store distance to nearest surface

Advantages
Can render very quickly using “sphere tracing”

ray marching using distance information to take larger steps
Can calculate normal as gradient of distance field
Nice ambient occlusion approximations

Thursday, March 15, 2012

Volumetric Explosions

Basic shape defined using spheres
Spheres can be animated in Unity

Detail added using “pyroclastic” noise
Simply offset distance from surface using Perlin noise at position
Noise stored in small 3D texture (64^3). Use 4-6 octaves

Shade based on displacement amount
Rendered using hybrid distance field / volume renderer

Sphere trace to surface
32 steps often enough

Then ray-march through volume
~16 steps

Thursday, March 15, 2012

Start with some spheres…

Thursday, March 15, 2012

Add Displacement (Pyroclastic Noise)

Thursday, March 15, 2012

2 Octaves

Thursday, March 15, 2012

4 Octaves

Thursday, March 15, 2012

Shade Based On Displacement Distance

Thursday, March 15, 2012

Add Color Gradient

Thursday, March 15, 2012

Add some lighting

Thursday, March 15, 2012

Add Volume Rendering

Thursday, March 15, 2012

Smoke Stack

Thursday, March 15, 2012

Smoke Stack

Thursday, March 15, 2012

Smoke Stack

Thursday, March 15, 2012

Smoke Stack

Thursday, March 15, 2012

Another Example

Thursday, March 15, 2012

Motion Blur

Thursday, March 15, 2012

Motion Blur

Improves “readability” in fast moving scenes
Gives cinematic look

maybe this will change with movies moving to 48 fps and higher?

Unity has an existing “motion blur” image effect
but not really motion blur
just leaves trails behind objects by blending new frames on top of old

We wanted to implement a modern velocity-based motion blur in
Unity

Thursday, March 15, 2012

Velocity Buffer Motion Blur

Generate velocity buffer
Shader calculates difference between previous and current positions in
screen-space
Unity now provides

previous model matrix (UNITY_MATRIX_PREV_M)
Previous world space position for skinned objects (POSITION1)

Camera motion blur calculated from depth buffer and previous model
view projection matrix

Have to be careful about motion blur on first frame of camera cuts!

Use these velocities to blur an image of the current scene in
direction of motion

Thursday, March 15, 2012

Reconstruction Filter Motion Blur

“A Reconstruction Filter for Plausible Motion Blur”
McGuire et al I3D 2012

Uses current frame image and depth
Plus screen-space velocity buffer

Simulates scatter as gather
accounts for occlusion using depth
blurs correctly outside object silhouettes

Still has some artifacts
Especially at tile boundaries

Thursday, March 15, 2012

Velocity Buffer Visualization

Thursday, March 15, 2012

Motion Blur - Off

Thursday, March 15, 2012

Simple Motion Blur

Thursday, March 15, 2012

Reconstruction Filter Motion Blur

Thursday, March 15, 2012

Things I Like About Unity

Nice editor
Very customizable
Very fast to prototype new effects
Automatically generates sliders for shader parameters
Shader parameters can be animated over time using curves
C# is fine once you get used to it!

like Java without the stupid bits
Helpful developers and community…

Thursday, March 15, 2012

Example: Gradient Editor script

Thursday, March 15, 2012

Conclusion

DirectX 11 brings state-of-the-art graphics to Unity
Techniques from the off-line CG world are becoming possible in
real-time
Aim to make Unity as artist-friendly as possible

Thursday, March 15, 2012

Thanks

Everyone at Passion Pictures
Quentin Vien
Jamie Franks
Julian Hodgson

Erland Körner
Aras Pranckevičius
Ole Ciliox
Robert and Kuba Cupisz

Thursday, March 15, 2012

Questions?

Thursday, March 15, 2012

References

Sphere Tracing: A Geometric Method for the Antialiased Ray
Tracing of Implicit Surfaces

John C. Hart, 1994
Volume Rendering for Games

Simon Green GDC 2005
Rendering Worlds with Two Triangles

Iñigo Quilez, NVSCENE 08
Production Volume Rendering

Magnus Wrenninge et al, Siggraph 2011

Thursday, March 15, 2012

http://www.iquilezles.org/www/material/nvscene2008/rwwtt.pdf
http://www.iquilezles.org/www/material/nvscene2008/rwwtt.pdf
http://magnuswrenninge.com/productionvolumerendering
http://magnuswrenninge.com/productionvolumerendering

References (cont.)

Stupid OpenGL Shader Tricks
Simon Green, GDC 2003

A Reconstruction Filter for Plausible Motion Blur
Morgan McGuire, Padraic Hennessy, Michael Bukowski, Brian Osman, I3D
2012

Thursday, March 15, 2012

