
Stable SSAO in Battlefield 3 with
Selective Temporal Filtering

Louis Bavoil
Developer Technology Engineer
NVIDIA

Johan Andersson
Rendering Architect
DICE / EA

SSAO

● Screen Space Ambient Occlusion (SSAO)

● Has become de-facto approach for rendering AO in
games with no precomputation

● Key Idea: use depth buffer as approximation of the
opaque geometry of the scene

● Large variety of SSAO algorithms, all taking as input
the scene depth buffer

[Kajalin 09]
[Loos and Sloan 10]
[McGuire et al. 11]

HBAO

● Horizon-Based Ambient Occlusion (HBAO)

● Considers the depth buffer as a heightfield, and
approximates ray-tracing this heightfield

● Improved implementation available in NVIDIA’s SDK11
(SSAO11.zip / HBAO_PS.hlsl)

● Used for rendering SSAO in Battlefield 3 / PC for its
“High” and “Ultra” Graphics Quality presets

[Bavoil and Sainz 09a]
[Andersson 10]

[White and Barré-Brisebois 11]

[Andersson 10]

Original HBAO
Implementation
in Frostbite 2

Frame time (GPU):
25.2 ms

Total HBAO time:
2.5 ms (10% of frame)

[1920x1200 “High” DX11
GeForce GTX 560 Ti]

Screenshot: With HBAO

Screenshot: HBAO Only

The HBAO looked good-enough on screenshots…

Video: Flickering HBAO

…but produced objectionable flickering in motion on thin objects
such as alpha-tested foliage (grass and trees in particular)

Our Constraints

● PC-only

● In Frostbite 2, HBAO implemented only for DX10 & DX11

● Low Perf Hit, High Quality

● Whole HBAO was already 2.5 ms (1920x1200 / GTX 560 Ti)

● HBAO used in High and Ultra presets, had to look great

Considered Workarounds

● Full-resolution SSAO or dual-resolution SSAO (*)

…but that more-than-doubled the cost of the SSAO, and
some flickering could remain

● Brighten SSAO on the problematic objects

…but we wanted a way to keep full-strength SSAO on
everything (in particular on foliage)

(*) [Bavoil and Sainz 09b]

Temporal Filtering Approach

● By definition, AO depends only on the scene
geometry, not on the camera

● For static (or nearly-static geometry), can re-project AO
from previous frame

● Reduce AO variance between frames by using a temporal
filter: newAO = lerp(newAO,previousAO,x)

● Known approach used in Gears of War 2

 [Nehab et al. 07]
[Smedberg and Wright 09]

Reverse
Reprojection
[Nehab et al. 07]

(uvi, zi) Current
Camera
(Frame i)

Previous
Camera
(Frame i-1)

Pi

(uvi, zi)

Reverse
Reprojection
[Nehab et al. 07]

Current
Camera
(Frame i)

1. Current
ViewProjection-1

Previous
Camera
(Frame i-1)

Pi

uvi-1

1. Current
ViewProjection-1

2. Previous
ViewProjection

(uvi, zi)

Reverse
Reprojection
[Nehab et al. 07]

Current
Camera
(Frame i)

Previous
Camera
(Frame i-1)

Current
Camera
(Frame i)

Pi

Pi-1

(uvi-1, zi-1)

1. Current
ViewProjection-1

3. Fetch
Previous
View Depth

2. Previous
ViewProjection

(uvi, zi)

Reverse
Reprojection
[Nehab et al. 07]

Previous
Camera
(Frame i-1)

Current
Camera
(Frame i) Pi

Pi-1

(uvi-1, zi-1)

1. Current
ViewProjection-1

3. Fetch Previous
View Depth

2. Previous
ViewProjection

4. If Pi ~= Pi-1
re-use AO(Pi-1)

(uvi, zi)

Reverse
Reprojection
[Nehab et al. 07]

Previous
Camera
(Frame i-1)

Temporal Refinement [Mattausch et al. 11]

 If Pi-1 ~= Pi
AOi = (Ni-1 AOi-1 + AOi) / (Ni-1 + 1)
Ni = min(Ni-1 + 1, Nmax)

Else
AOi = AOi

Ni = 1

Ni = num. frames that have been accumulated in current solution at Pi
Nmax = max num. frames (~8), to keep AOi-1 contributing to AOi

Pi

Pi-1

(uvi-1, zi-1)

(uvi, zi)

Disocclusion Test [Mattausch et al. 11]

 Pi ~= Pi-1

 wi = ViewDepth(Viewi-1, Pi)

 wi-1 = ViewDepth(Viewi-1, Pi-1)

Relaxed Disocclusion Test

 Pi ~= Pi-1

To support nearly-static objects

● Such as foliage waving in the wind (grass, trees, …)

● We simply relaxed the threshold (used ε = 10%)

Video: Temporal Filtering with ε=+Inf

Flickering is fixed, but there are ghosting artifacts due to disocclusions

Flickering on the grass (nearly static), but no ghosting artifacts

Video: Temporal Filtering with ε=0.1%

 No flickering, no ghosting, 1% perf hit (25.2 -> 25.5 ms)

Video: Temporal Filtering with ε=10%

Video: Trailing Artifacts

New issue: trailing artifacts on static objects receiving AO from dynamic objects

TrailingArtifacts.wmv

Observations

1. With temporal filtering OFF
The flickering pixels are mostly on
foliage. The other pixels do not have any
objectionable flickering.

2. With temporal filtering ON
The trailing artifacts (near the
character's feet) are not an issue on
foliage pixels.

Selective Temporal Filtering

● Assumption

The set of flickering pixels and the set of trailing
pixels are mutually exclusive

● Our Approach:

1. Classify the pixels as stable (potential trailing) or
unstable (potential flickering)

2. Disable the temporal filter for the stable pixels

Pixel Classification Approach

● Normal reconstruction in SSAO shader
● Px = ||P - Pleft|| < ||P - Pright|| ? Pleft : Pright

● Py = ||P - Ptop|| < ||P - Pbottom|| ? Ptop : Pbottom

● N = ± normalize(cross(P - Px, P - Py))

● Idea: If reconstructed normal is noisy,
the SSAO will be noisy

P Pl Pr

Pt

Pb

Piecewise Continuity Test

1. Select nearest
neighbor Px between
Pleft and Pright

P Px = Pleft

Pright

Piecewise Continuity Test

1. Select nearest
neighbor Px between
Pleft and Pright

2. Continuous pixels

|| Px – P || < L
where L = distance threshold
(in view-space units)

P Px = Pleft

Pright

Pixel Classification Examples

Two Half-Res Passes

Pass 1: Output SSAO and continuity mask
 continuityMask = (|| Px – P || < L && || Py – P || < L)

Pass 2: Dilate the discontinuities

 dilatedMask = all4x4(continuityMask)

Example Scene

Pass 1: Classification

Note: Distant pixels are all classified as “unstable” because ||P – Px/y||
increases with depth (perspective camera). Luckily for us, trailing
artifacts were not an issue in the distance so this was not an issue.

Pass 2: 4x4 Dilation

Pixel classified as unstable if it
has at least one discontinuity in
its neighborhood

4 Gather4 instructions on DX11

Enable temporal filter only:
- for unstable pixels
- with (|1 – wi /wi-1| < ε)

Selective Temporal Filtering

Video: HBAO + Selective Temporal Filtering

Video: Final Result

Final Pipeline with
Selective Temporal
Filtering (STF)

STF Performance Hit
[1920x1200 “High”, GTX 560 Ti]

• HBAO total: 2.5 ms -> 2.9 ms
• Frame time (GPU): 25.2 -> 25.6 ms

(1.6% performance hit)

STF Parameters
• Reprojection Threshold: For detecting

disocclusions (ε=10%)
• Distance Threshold: For detecting

discontinuities (L=0.1 meter)
• Dilation Kernel Size (4x4 texels)

History Buffers

● Additional GPU memory required for the history buffers
● For (AOi, Zi, Ni) and (AOi-1, Zi-1, Ni)

● Full-res, 1xMSAA

● For Multi-GPU Alternate Frame Rendering (AFR) rendering
● Create one set of buffers per GPU and alternate between them

● Each AFR GPU has its own buffers & reprojection state

● The history buffers are cleared on first use
● Clear values: (AO,Z)=(1.f, 0.f) and N=0

SelectiveTemporalFilter(uvi, AOi)
zi = Fetch(ZBufferi, uvi)

Pi = UnprojectToWorld(uvi, zi)

uvi-1 = ProjectToUV(Viewi-1, Pi)

zi-1 = Fetch(ZBufferi-1, uvi-1)

Pi-1 = UnprojectToWorld(uvi-1, zi-1)

wi = ViewDepth(Viewi-1 , Pi)

wi-1 = ViewDepth(Viewi-1 , Pi-1)

isStablePixel = Fetch(StabilityMask, uvi)

if (|1 – wi/wi-1 | < ε && !isStablePixel)

AOi-1 = Fetch(AOTexturei-1, uvi-1)

Ni-1 = Fetch(NTexturei-1, uvi-1)

AOi = (Ni-1 AOi-1 + AOi) / (Ni-1 + 1)

Ni = min(Ni-1 + 1, Nmax)

else

Ni = 1

return(AOi, wi, Ni)

Unoptimized
pseudo-code

For fetching zi-1, use
clamp-to-border to
discard out-of-frame
data, with borderZ=0.f

For fetching AOi-1, use
bilinear filtering like in
[Nehab et al. 07]

Blur Optimization

Raw HBAO (Blur OFF)

Final HBAO (Blur ON)

Blur Overview

● Full-screen pixel-shader passes

● BlurX (horizontal)

● BlurY (vertical)

● BlurX takes as input

● Half-res AO

● Full-res linear depth (non-MSAA)

Blur Kernel

● We use 1D Cross-Bilateral Filters (CBF)

● Gaussian blur with depth-dependent weights

[Petschnigg et al. 04]
[Eisemann and Durand 04]

[Kopf et al. 07]
[Bavoil et al. 08]

[McGuire et al. 11]

Sum[AOi w(i,Zi,Z0), i=-R..R]

Sum[w(i,Zi,Z0), i=-R..R]
Output =

Blur Opt: Adaptive Sampling

2/3 of total weights

1/3 of total weights

Can these samples be
approximated?

Blur Opt: Adaptive Sampling

Replace pairs of samples
with in-between sample

Keep original samples

(AO,Z) fetches with
hw bilinear filtering

Blur Opt: Adaptive Sampling

Brute-Force Sampling BlurX cost: 0.8 ms

Adaptive Sampling BlurX cost: 0.6 ms

Blur Opt: Speedup

Blur Radius: 8
Resolution: 1920x1200
GeForce GTX 560 Ti

GPU Time Before After Speedup

Pack (AO,Z) 0.18 ms 0.18 ms 0%

BlurX 0.75 ms 0.58 ms 29%

BlurY+STF 1.00 ms 0.95 ms 5% (*)

Blur Total 1.93 ms 1.71 ms 13%

(*) Lower speedup due to the math overhead of
the Selective Temporal Filter (STF)

Summary

Two techniques used in Battlefield 3 / PC

1. A generic solution to fix SSAO flickering with
a low perf hit (*) on DX10/11 GPUs

2. An approximate cross-bilateral filter, using a
mix of point and bilinear taps

(*) 0.4 ms in 1920x1200 on GeForce GTX 560 Ti

Questions?

Louis Bavoil
lbavoil@nvidia.com

Johan Andersson
johan.andersson@dice.se

References

[McGuire et al. 11] McGuire, Osman, Bukowski, Hennessy. The Alchemy
Screen-Space Ambient Obscurance Algorithm. Proceedings of ACM
SIGGRAPH / Eurographics High-Performance Graphics 2011 (HPG '11).

[White and Barré-Brisebois 11] White, Barré-Brisebois. More Performance!
Five Rendering Ideas from Battlefield 3 and Need For Speed: The Run.
Advances in Real-Time Rendering in Games. SIGGRAPH 2011.

[Mattausch et al. 11] Mattausch, Scherzer, Wimmer. Temporal Screen-
Space Ambient Occlusion. In GPU Pro 2. 2011.

[Loos and Sloan 10] Loos, Sloan. Volumetric Obscurance. ACM Symposium
on Interactive 3D Graphics and Games 2010.

References

[Andersson 10] Andersson. Bending the Graphics Pipeline. Beyond
Programmable Shading course, SIGGRAPH 2010.

[Bavoil and Sainz 09a] Bavoil, Sainz. Image-Space Horizon-Based Ambient
Occlusion. In ShaderX7. 2009.

[Bavoil and Sainz 09b] Bavoil, Sainz. Multi-Layer Dual-Resolution Screen-
Space Ambient Occlusion. SIGGRAPH Talk. 2009.

[Smedberg and Wright 09] Smedberg, Wright. Rendering Techniques in
Gears of War 2. GDC 2009.

[Kajalin 09] Kajalin. Screen Space Ambient Occlusion. In ShaderX7. 2009.

[Bavoil et al. 08] Bavoil, Sainz, Dimitrov. Image-Space Horizon-Based
Ambient Occlusion. SIGGRAPH Talk. 2008.

References

[Nehab et al. 07] Nehab, Sander, Lawrence, Tatarchuk, Isidoro.
Accelerating Real-Time Shading with Reverse Reprojection Caching. In ACM
SIGGRAPH/Eurographics Symposium on Graphics Hardware 2007.

[Kopf et al. 07] Kopf, Cohen, Lischinski, Uyttendaele. 2007. Joint Bilateral
Upsampling. In Proceedings of SIGGRAPH 2007.

[Petschnigg et al. 04] Petschnigg, Szeliski, Agrawala, Cohen, Hoppe.
Toyama: Digital photography with flash and no-flash image pairs. In
Proceedings of SIGGRAPH 2004.

[Eisemann and Durand 04] Eisemann, Durand. “Flash Photography
Enhancement via Intrinsic Relighting”. In Proceedings of SIGGRAPH 2004.

Bonus Slides

HLSL: Adaptive Sampling
float r = 1;

// Inner half of the kernel: step size = 1 and POINT filtering

[unroll] for (; r <= KERNEL_RADIUS/2; r += 1)

{

 float2 uv = r * deltaUV + uv0;

 float2 AOZ = mainTexture.Sample(pointClampSampler, uv).xy;

 processSample(AOZ, r, centerDepth, totalAO, totalW);

}

// Outer half of the kernel: step size = 2 and LINEAR filtering

[unroll] for (; r <= KERNEL_RADIUS; r += 2)

{

 float2 uv = (r + 0.5) * deltaUV + uv0;

 float2 AOZ = mainTexture.Sample(linearClampSampler, uv).xy;

 processSample(AOZ, r, centerDepth, totalAO, totalW);

}

HLSL: Cross-Bilateral Weights

// d and d0 = linear depths

float crossBilateralWeight(float r, float d, float d0)

{

 // precompiled by fxc

 const float BlurSigma = ((float)KERNEL_RADIUS+1.0f) * 0.5f;

 const float BlurFalloff = 1.f / (2.0f*BlurSigma*BlurSigma);

 // assuming that d and d0 are pre-scaled linear depths

 float dz = d0 - d;

 return exp2(-r*r*BlurFalloff - dz*dz);

}

