
Don’t Throw it all Away: Efficient
Buffer Management

John McDonald
Developer Technology, NVIDIA Corporation

What are we talking about?

● General Performance/Functional Guidance

● CPU-GPU Sync Points

● Buffer Usage Patterns

● Contention-Free Buffers

● Constant Buffers

● Performance Investigation

“Buffers” is really generic…

● Vertex Buffers

● Index Buffers

● Constant Buffers

General Guidance

General Guidance

● D3D11 >> D3D9 (generally)

● It’s much harder to hit the ultra-slow path (aka CPU-
GPU Sync Points)

● Reduce your API calls where possible

● Batch up buffer updates

● Alignment matters! (16-byte, please)

● Aligned copies can be ~30x faster

More General Guidance

● D3D11Device will grab a mutex for you, but each
DeviceContext can only be called from one
thread at a time

● This is the source of many crashes blamed on the driver

● UpdateSubresource requires more CPU time

● When possible, prefer Map/Unmap

● D3D11 Debug Runtime is awesome!

● Please use it, ensure you are running clean

CPU-GPU Sync Points

CPU-GPU Sync Points

● CPU-GPU Sync Points are caused when the CPU
needs the GPU to complete work before an API
call can return

● These make us sad

CPU-GPU sync point examples

● Explicit

● Spin-lock waiting for query results

● Readback of Framebuffer you just rendered to

● Implicit (potential sync points)

● GPU Memory Allocation after Deallocation

● Buffer Rename operation (MAP_DISCARD) after
deallocation

● Immediate update of a buffer still in use

Why are they bad?

● Ideal frame time should be max(CPU time, GPU
time)

● CPU-GPU Sync point turns this into CPU Time +
GPU Time.

Ideal

GPU

CPU

With Sync point

Presents Presents

Really? That bad?

● One bad sync point can halve your frame rate

● Even worse: the more sync points you have, the
harder they are to find.

● Performance will just seem generally slow

● The badness depends, in part, on where in the
frame the sync-point occurs

● Generally, the later the sync point, the worse it is

● Early sync-points are also bad if your workload is very
lopsided towards either the CPU or the GPU

Check your middleware

● Middleware is generally written in a vacuum

● What works best in the small might not scale well

● Especially check for CPU-GPU sync points

A quick D3D9 interlude

● CPU-GPU sync points are trivial to introduce in
D3D9

● Locking any buffer in D3D9 with flags=0 is a
virtually guaranteed CPU-GPU Sync point if that
buffer is still in use. 

Buffer Usage Patterns

Buffer Usage Patterns

U
p
d
a
te

s
 M

o
re

 O
fte

n

“Forever”

Long Lived

Transient

Temporary

Constants

- Level BSPs

- Character Geometry

- UI, Text (New!)

- Particle Systems (Streaming)

- Shader Parameters

“Forever” Buffers

● Useful for geometry that is loaded
once

● Ex: Level BSPs, loaded behind a load
screen

● Don’t use this for streaming data

● Hitching during allocation is possible/likely

● IMMUTABLE flag at creation time

● Cannot update these!

U
p
d
a
te

s
 M

o
re

 O
fte

n

“Forever”

Long Lived

Transient

Temporary

Constants

Long Lived Buffers

● Data that is streamed in from disk,
but is expected to last for “awhile”

● Ex: Character geometry

● Reuse these; stream into them

● DEFAULT flag at creation time

● UpdateSubresource to update

U
p
d
a
te

s
 M

o
re

 O
fte

n

“Forever”

Long Lived

Transient

Temporary

Constants

Temporary buffers

● Fire-and-forget data

● E.g. Particle systems

● Almost certainly lives in system
RAM

● DYNAMIC flag at create time

● Prefer Map/Unmap to update these

● UpdateSubresource involves an extra copy

U
p
d
a
te

s
 M

o
re

 O
fte

n

“Forever”

Long Lived

Transient

Temporary

Constants

Constant Buffers

● These are different than other
buffers in D3D11.

● The GPU can deal with many of
them in flight at once

● Create with DYNAMIC

● Map/DISCARD to Update

● More on these in a bit

U
p
d
a
te

s
 M

o
re

 O
fte

n

“Forever”

Long Lived

Transient

Temporary

Constants

We skipped one…

● Transient Buffers

● New informal class of Buffer

● Used for (e.g.) UI/Text

● Things that are dynamic, but few vertices each—and
may need to be updated on odd schedules

● DYNAMIC flag at creation time

● Transient Buffers are part of a new class of
buffer…

Contention-Free Buffers

Transient Buffer Overview

● Treat Buffer as a Memory Heap,
with a twist

● On CPU, Freed memory available now

● On GPU, Freed memory is available
when GPU is finished with it

● Assume memory is in use until told otherwise

● Determine when GPU must be finished with Freed
memory, then return to the “really free” list

U
p
d
a
te

s
 M

o
re

 O
fte

n

“Forever”

Long Lived

Transient

Temporary

Constants

CTransientBuffer
● On Alloc, walk a Free list

looking for best fit
● Data is updated using

Map/NO_OVERWRITE

● Return opaque, immutable
handle

● On Free, record that chunk
was freed—into
RetiredFrames.back()

● Just after present, an
“OnPresent” function is
called

class CTransientBuffer
{
 ID3D11Buffer* mBuffer;
 UINT mLengthBytes;
 ID3D11Device* mOwner;
 vector<CSubAlloc> mFreeList;
 list<RetiredFrame> mRetiredFrames;

public:
 CSubAlloc* Alloc(UINT, void*,
 ID3D11DeviceContext*);
 void Free(CSubAlloc*);
 void OnPresent(ID3D11DeviceContext*);

CTransientBuffer Guts
class CTransientBuffer
{
 ID3D11Buffer* mBuffer;
 UINT mLengthBytes;
 ID3D11Device* mOwner;
 vector<CSubAlloc> mFreeList;
 list<RetiredFrame> mRetiredFrames;

public:
 CSubAlloc* Alloc(UINT, void*,
 ID3D11DeviceContext*);
 void Free(CSubAlloc*);
 void OnPresent(ID3D11DeviceContext*);
 ...

struct RetiredFrame
{
 list<CSubAlloc*> mPendingFrees;
 ID3D11Query* mFrameCompleteQuery;
};

class CSubAlloc
{
 UINT mOffset;
 UINT mLength;

 ...

CTransientBuffer::OnPresent
void CTransientBuffer::OnPresent(ID3D11DeviceContext* _dc)

{

 // First, deal with deletes from this frame

 RetiredFrame& retFrame = mRetiredFrames.back();

 if (!retFrame.mPendingFrees.empty()) {

 retFrame.mFrameCompleteQuery = CreateAndIssueEventQuery(_dc);

 // Append a new (empty) RetiredFrame to mRetiredFrames

 mRetiredFrames.push_back(RetiredFrame());

 }

 // Second, return pending frees to mFreeList

CTransientBuffer::OnPresent
 // Second, return pending frees to mFreeList

 FOREACH(frameIt, mRetiredFrames) {

 auto query = frameIt->mFrameCompleteQuery;

 if (!(query && IsQueryComplete(query)))

 break;

 FOREACH(suballocIt, frameIt->mPendingFrees) {

 ReallyFree(*subAllocIt);

 }

 }

}

CTransientBuffer Visualized

Free List Retired Frames

CTransientBuffer Visualized

Free List Retired Frames

Allocating four
Buffers

CTransientBuffer Visualized

Free List Retired Frames

Nothing

CTransientBuffer Visualized

Free List Retired Frames

Deallocating
Yellow and Green

EQ

CTransientBuffer Visualized

Free List Retired Frames

EvEEEVEentE

Deallocating
Yellow and Green

EQ

CTransientBuffer Visualized

Free List Retired Frames

EQ Returns for
Retired Frame

CTransientBuffer: Handling OOM

● Ways to handle Out of Memory on Alloc:

● Spin-lock waiting for RetiredFrame Queries to return

● Allocate a new, larger buffer
● Release current buffer

● Requires a system memory copy to initially fill new buffer

● These will (probably) stall

● But in your code
● can be easily logged -and/or-

● Recorded to adjust and avoid for subsequent runs

Transient Buffer Pattern

● Works in D3D9 as well

● Can be extended and simplified to contention-
free Temporary Buffers, too!

● Let’s take a quick look at that.

Discard-Free Temporary Buffers

● Allocate out of Buffer as a circular buffer

● No opaque handle needed

● Remember ending address of the last allocation

● Per frame: Assuming any allocations, issue query

● Later: When query returns, move the end pointer
to indicate additional available space

● Credit: Blizzard’s StarCraft 2 Team (thanks!)

Discard-Free Temp Buffer Visualized

Start Retired Frames End

Start State

Discard-Free Temp Buffer Visualized

Start Retired Frames

NextEnd

End

Allocate some
stuff

Discard-Free Temp Buffer Visualized

Start Retired Frames

NextEnd

End

Go on…

NextEnd

Discard-Free Temp Buffer Visualized

Start Retired Frames

NextEnd

End

Queries start to
return…

NextEnd

Discard-Free Temp Buffer Visualized

Start Retired Frames

NextEnd

End

etc…

NextEnd

Discard-Free Temp Buffer Visualized

Start Retired Frames

NextEnd

End

etc…

NextEnd

Constant Buffers

Constant Buffer Organization

● Group by frequency of update

● The cheapest buffers are the ones you never
update

● You can bind multiple buffers in one call (Reduce
those API calls!)

Proposed Buffer Grouping

● Assuming you are not vertex shading limited

● Don’t solve the travelling salesman in your VS

● Seriously: this isn’t common

Multiple Constant Buffers

● One for per-frame constants (GI values, lights)

● One for per-camera constants (ViewProj matrix,
camera position in world, RT dimensions)

oPos = in.Position
 * cWorldViewPos;

oPos = in.Position
 * cWorld
 * cViewPos;
 ^
One extra 3x3 matrix
multiply in the VS.
No biggie.

Old HLSL New HLSL

Multiple Constant Buffers cont’d

● One for per-object constants (World matrix,
dynamic material properties, etc)

● One for per-material constants (if these are
shared—if not then drop them
in with per-object constants)

● Splitting constants this way
eliminates constant updates
for static objects.

Constant Buffer Tricks

● Use shared structs to update when possible

● Struct can be included from both hlsl and C++

● Makes buffer updates trivial!

● Assign them to slots by convention:

● b0: Per-Frame, b1: Per-Camera, etc

● Slot assignment can live in shared header, too.

Performance Investigations

Performance Investigation

● Scene from a Typical D3D11 Application
(unreleased)

● 115 Dynamic Vertex Buffer Updates (particles) per
frame

● Total Time: 4.36ms / frame

Per- Call Frame

Map/Unmap 0.036 ms 3.79 ms

Memcpy ~0.004 ms 0.4 ms

Let’s buffer the updates

● All Dynamic Updates during one update

● 1 Map per frame (using MAP_DISCARD)

● Still 115 memcpys (I’m lazy)

● Total Time: 0.267ms / frame (savings: 4.1ms!)

Per- Call Frame

Map/Unmap 0.036 ms 0.036 ms

Memcpy ~0.002 ms 0.231 ms

Buffered update, no discards

● One update into a triple buffer

● 1 Map per frame (using MAP_NOOVERWRITE)

● Still 115 memcpys (I’m still lazy)

● Total Time: 0.217ms / frame (savings: 4.15ms)

● Bonus: No hitching ever

● Downside: 3x the memory

Per- Call Frame

Map/Unmap 0.031 ms 0.031 ms

Memcpy ~0.002 ms 0.231 ms

Performance Results

● Reducing API usage was a huge CPU-side savings
(4.09 ms). GPU Perf Unaffected

● Discard-Free updates were marginally faster still—
but would never hitch.

Total Frame Time

Original 4.360 ms

Buffered Updates 0.267 ms

Discard-Free 0.217 ms

GPUView

● Covered by Jon Story earlier today

● Hopefully you caught it!

● Great for finding CPU-GPU sync points

Questions?

● jmcdonald at nvidia dot com

Nifty Buffer Summary Table
Type Usage (e.g) Create Flag Update Method

“Forever” Level BSPs IMMUTABLE Cannot Update

Long-Lived Characters DEFAULT UpdateSubResource

Transient UI/Text DYNAMIC CTransientBuffer

Temporary Particles DYNAMIC Map/NO_OVERWRITE

Constant Material Props DYNAMIC Map/DISCARD

