GLC

Don’t Throw it all Away: Efficient
Buffer Management

John McDonald
Developer Technology, NVIDIA Corporation

GAME DEVELOPERS CONFERENCE

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

What are we talking about?

e General Performance/Functional Guidance

o« CPU-GPU Sync Points

o Buffer Usage Patterns
o Contention-Free Buffers

« Constant Buffers Ak
« Performance Investigation —

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

“Buffers” is really generic...

o Vertex Buffers
e Index Buffers
e Constant Buffers

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

General Guidance

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

General Guidance

o D3D11 > > D3D9 (generally)

o It's much harder to hit the ultra-slow path (aka CPU-
GPU Sync Points)

e Reduce your API calls where possible
o Batch up buffer updates

o Alignment matters! (16-byte, please)
» Aligned copies can be ~30x faster

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

More General Guidance

« D3D11Device will grab a mutex for you, but each
DeviceContext can only be called from one
thread at a time
e This is the source of many crashes blamed on the driver

o UpdateSubresource requires more CPU time

o« When possible, prefer Map/Unmap

e D3D11 Debug Runtime is awesome!

o Please use it, ensure you are running clean

CPU-GPU Sync Points

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CPU-GPU Sync Points

o« CPU-GPU Sync Points are caused when the CPU
needs the GPU to complete work before an API
call can return

e These make us sad

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CPU-GPU sync point examples

e Explicit

e Spin-lock waiting for query results

o Readback of Framebuffer you just rendered to
o Implicit (potential sync points)

e GPU Memory Allocation after Deallocation

o Buffer Rename operation (MAP_DISCARD) after
deallocation

o Immediate update of a buffer still in use

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Why are they bad?

e Ideal frame time should be max(CPU time, GPU
time)

o« CPU-GPU Sync point turns this into CPU Time +
GPU Time.

Ildeall o Wlth %ync pj)lnt

GPU L]
CPU . - ururu -
NS ~_

Presents Presents

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Really? That bad?

e One bad sync point can halve your frame rate

o Even worse: the more sync points you have, the
harder they are to find.
o Performance will just seem generally slow

e The badness depends, in part, on where in the

frame the sync-point occurs
o Generally, the later the sync point, the worse it is

o Early sync-points are also bad if your workload is very
lopsided towards either the CPU or the GPU

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Check your middleware

o Middleware is generally written in a vacuum
« What works best in the small might not scale well

e Especially check for CPU-GPU sync points

A quick D3D9 interlude

o CPU-GPU sync points are trivial to introduce in
D3D9

e Locking any buffer in D3D9 with flags=0 is a
virtually guaranteed CPU-GPU Sync point if that
buffer is still in use. ¥E®

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Buffer Usage Patterns

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Buffer Usage Patterns

- Level BSPs
- Character Geometry
- UI, Text (New!)

horary - Particle Systems (Streaming)
- Shader Parameters

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM
/ >

“Forever” Buffers ;| Fol

o Useful for geometry that is loaded

once
o Ex: Level BSPs, loaded behind a load

screen
e Don't use this for streaming data
» Hitching during allocation is possible/likely

« IMMUTABLE flag at creation time

o Cannot update these!

O °910|x

Constants

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Long Lived Buffers | o
< ed

e Data that is streamed in from disk,
but is expected to last for “awhile”

o Ex: Character geometry DOIC
« Reuse these; stream into them ﬁ
« DEFAULT flag at creation time
o UpdateSubresource to update

O 210\

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Temporary buffers

o Fire-and-forget data
e E.g. Particle systems

o Almost certainly lives in system & | Tempore
RAM ﬁ

« DYNAMIC flag at create time

o Prefer Map/Unmap to update these
o UpdateSubresource involves an extra copy

%3‘()I'\

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Constant Buffers
e These are different than other
buffers in D3D11.

o« The GPU can deal with many of
them in flight at once

e Create with DYNAMIC
o« Map/DISCARD to Update
e More on these in a bit

We skipped one...

e Transient Buffers
e New informal class of Buffer
e Used for (e.qg.) UIl/Text

e Things that are dynamic, but few vertices each—and
may need to be updated on odd schedules

« DYNAMIC flag at creation time

e Transient Buffers are part of a new class of
buffer...

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Contention-Free Buffers

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Transient Buffer Overview

o Treat Buffer as a Memory Heap, _—
with a twist — >

e On CPU, Freed memory available now
e On GPU, Freed memory is available
when GPU is finished with it
e Assume memory is in use until told otherwise
o Determine when GPU must be finished with Freed
memory, then return to the “really free” list

O {:J()V-\

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CTransientBuffer

« On Alloc, walk a Free list 21355 CTransientBuffer
lOOking for beSt ﬂt ID3D11Buffer* mBuffer;
« Data is updated using UINT mLengthBytes;
Map/NO OVERWRITE ID3D11Device* mOwner;
-) vector<CSubAlloc> mFreelList;
« Return opaque, immutable list<RetiredFrame> mRetiredFrames;
handle
public:
« On Free’ re(_:ord that chunk CSubAlloc* Alloc(UINT, void*,
was freed—into ID3D11DeviceContext*);
RetiredFrames.back() void Free(CSubAlloc*);
void OnPresent(ID3D11DeviceContext*);
o Just after present, an
“OnPresent” function is
called

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CTransientBuffer Guts

class CTransientBuffer

{

struct RetiredFrame
{
list<CSubAlloc*> mPendingFrees;

ID3D11Query* mFrameCompleteQuery;
¥

ID3D11Buffer* mBuffer;
UINT mLengthBytes;
ID3D11Device* mOwner;

class CSubAlloc

{
UINT mOffset;

UINT mLength;

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CTransientBuffer::OnPresent

void CTransientBuffer::0nPresent(ID3D11DeviceContext* _dc)
{
// First, deal with deletes from this frame
RetiredFrame& retFrame = mRetiredFrames.back();
if (!retFrame.mPendingFrees.empty()) {
retFrame.mFrameCompleteQuery = CreateAndIssueEventQuery(_dc);

// Append a new (empty) RetiredFrame to mRetiredFrames
mRetiredFrames.push_back(RetiredFrame());

}

// Second, return pending frees to mFreeList

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CTransientBuffer::OnPresent

// Second, return pending frees to mFreelList

FOREACH(frameIt, mRetiredFrames) {

auto query = frameIt->mFrameCompleteQuery;

if (!(query && IsQueryComplete(query)))
break;

FOREACH(suballocIt, frameIt->mPendingFrees) {
ReallyFree(*subAllocIt);

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CTransientBuffer Visualized

Free List Retired Frames

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CTransientBuffer Visualized

Retired Frames

Free List

Allocating four
Buffers

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CTransientBuffer Visualized

Retired Frames

Free List

Nothing

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CTransientBuffer Visualized

Retired Frames

EQ

Free List

Deallocating
Yellow and Green

MARCH 5-9, 2012 WWW.GDCONF.COM

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

CTransientBuffer Visualized

Retired Frames

Free List

EQ Returns for
Retired Frame

CTransientBuffer: Handling OOM

 Ways to handle Out of Memory on Alloc:
e Spin-lock waiting for RetiredFrame Queries to return

o Allocate a new, larger buffer
o Release current buffer
e Requires a system memory copy to initially fill new buffer

e These will (probably) stall

e But in your code
e can be easily logged -and/or-
e Recorded to adjust and avoid for subsequent runs

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Transient Buffer Pattern

e Works in D3D9 as well

o Can be extended and simplified to contention-
free Temporary Buffers, too!
o Let's take a quick look at that.

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Discard-Free Temporary Buffers

o Allocate out of Buffer as a circular buffer

o No opaque handle needed

« Remember ending address of the last allocation

o Per frame: Assuming any allocations, issue query

o Later: When query returns, move the end pointer
to indicate additional available space

e Credit: Blizzard’s StarCraft 2 Team (thanks!)

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Discard-Free Temﬁ Buffer Visualized

Start End Retired Frames

Start State

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Discard-Free Temp Buffer Visualized

Retired Frames
NextEnd

Allocate some
stuff

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Discard-Free Temp Buffer Visualized

Retired Frames

NextEnd
NextEnd

Go on...

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Discard-Free Temp Buffer Visualized

N
Start Retired Frames
NextEnd
NextEnd

Queries start to
return...

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Discard-Free Temp Buffer Visualized

Y k e
Start End Retired Frames
NextEnd

NextEnd —

etc...

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Discard-Free Temp Buffer Visualized/I

Retired Frames
extEnd

NextEnd

etc...

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Constant Buffers

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Constant Buffer Organization

o Group by frequency of update
e The cheapest buffers are the ones you never
update

e YOu can bind multiple buffers in one call (Reduce
those API calls!)

Proposed Buffer Grouping

o Assuming you are not vertex shading limited
o Don’t solve the travelling salesman in your VS
e Seriously: this isn't common

Multiple Constant Buffers

e One for per-frame constants (GI values, lights)

e One for per-camera constants (ViewProj matrix,
camera position in world, RT dimensions)

Old HLSL New HLSL
oPos = in.Position oPos = in.Position
* cWorldViewPos; * cWorld

* cViewPos;

N\

One extra 3x3 matrix
multiply in the VS.
No biggie.

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Multiple Constant Buffers cont’'d

e One for per-object constants (World matrix,
dynamic material properties, etc)

o One for per-material constants (if these are
shared—if not then drop thei
in with per-object constants)

e Splitting constants this way g&
eliminates constant updates &
for static objects. crayawmemes

&

G

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Constant Buffer Tricks

o Use shared structs to update when possible
e Struct can be included from both hlsl and C++
o Makes buffer updates triviall!

e Assign them to slots by convention:
e bO: Per-Frame, bl: Per-Camera, etc
e Slot assignment can live in shared header, too.

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Performance Investigations

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Performance Investigation

e Scene from a Typical D3D11 Application
(unreleased)

o« 115 Dynamic Vertex Buffer Updates (particles) per
frame

e Total Time: 4.36ms / frame

Map/Unmap 0.036 ms 3.79 ms
Memcpy ~(0.004 ms 0.4 ms

Let’s buffer the updates

e All Dynamic Updates during one update
e 1 Map per frame (using MAP_DISCARD)
o Still 115 memcpys (I'm lazy)
e Total Time: 0.267ms / frame (savings: 4.1ms!)

Map/Unmap 0.036 ms 0.036 ms
Memcpy ~(0.002 ms 0.231 ms

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Buffered update, no discards

o One update into a triple buffer
e 1 Map per frame (using MAP_NOOVERWRITE)
o Still 115 memcpys (I'm still lazy)
e Total Time: 0.217ms / frame (savings: 4.15ms)
o Bonus: No hitching ever
Downside: 3x the memory

Map/Unmap 0.031 ms 0.031 ms
Memcpy ~(0.002 ms 0.231 ms

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Performance Results

e Reducing API usage was a huge CPU-side savings
(4.09 ms). GPU Perf Unaffected

e Discard-Free updates were marginally faster still—
but would never hitch.

Total Frame Time

Original 4.360 ms
RIUEIEC MU EICIN 0.267 MS

Discard-Free 0.217 ms

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

o Covered by Jon Story earlier today
o Hopefully you caught it!

o Great for finding CPU-GPU sync points

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Questions?
e jmcdonald at nvidia dot com

Nifty Buffer Summary Table

Usage (e.qg) Create Flag | Update Method

“Forever” Level BSPs IMMUTABLE Cannot Update
Long-Lived Characters DEFAULT UpdateSubResource
Transient UI/Text DYNAMIC CTransientBuffer
Temporary Particles DYNAMIC Map/NO_OVERWRITE

Constant Material Props DYNAMIC Map/DISCARD

