Evan Hart

What is this about?

* OpenGL is an APl with a lot of legacy
» OpenGL has evolved rapidly in the past 5 years

— More than 5 versions released
— Nearly 70 new ARB extensions in the past 2 years
= New features have brought a lot to the API

— Programming convenience and developer productivity
— Enhanced capabilities

Who does this talk address?

* Anyone considering adopting modern OpenGL features
— DirectX developers
— OpenGL ES developers
— OpenGL developers working with older versions

Agenda

= APl-wide tools

= Shader improvements
» Texture improvements
» New shaders

= Advanced topics

APl-wide Enhancements

= Allow for easier development and more productivity
» Touch entire breadth of OpenGL

» Crossover with the resource management

= Will not improve the speed or features of your application
— There are exceptions

Why Direct State Access?

* OpenGL is a stateful APl with lots of switches
— glActiveTexture, glBindTexture, etc

= Selector and current states can make state changes verbose
— May need to bind / change active unit to set texture min filter

* Management of state becomes a burden as app complexity
grows

— Unknown state condition leads to extra setting
— Attempts to save/restore can be problematic

The solution

» EXT_direct_state_access (often abbreviated DSA)
= Add functions that operate on object/units directly

— Set a texture filter on a given texture object, not the current one
— Bind a texture to a specific unit, not the active unit

= Adds a very large number of new functions
— Covers stuff all the way back to OpenGL 1.x

= Most new extensions also contain a special DSA section
— Additional DSA functions

An Example

Without DSA With DSA

glActiveTexture(GL_TEXTURE®); glTextureParameteriEXT(id,
glBindTexture(GL_TEXTURE_2D, id); GL_TEXTURE_2D,
glTexParameteri(GL_TEXTURE_2D, GL_TEX_MIN_FILTER, GL_LINEAR);

GL_TEX MIN_FILTER, GL_LINEAR);

Things DSA Supports

= Texture objects

= Vertex array objects
* Framebuffer objects
= Program objects

= Buffer objects

= Matrix stacks

= Lots of legacy stuff

Stuff DSA does not solve

= Will not improve performance
— When setting several properties, glBind* may be faster
— Drivers still improving, likely not noticeable

= Does not make it OK to set redundant state
— It can help save excess binding

= Does not make incoherent accesses fast

— Objects are independent pieces of memory, this is like pointer
chasing

Debugging Enhancements

= ARB_debug_output

= KHR_debug

— Newer, subsumes functionality of ARB_debug_output
— Adds label and marker functionality

= InfoLog better

How the debug enhancements help

Classic style New style

= glGetError is very invasive = Register a callback function
= Must use in lots of places = Single piece of code invoked by
= Adds overhead the driver

= glGetError is very limited = No need for macros/wrappers

« Handful of errors = Easily turned on/off

= No levels / warnings = Additional information

* Free-form error string

« Limited part of the API » Multiple levels (warnings)

Using Debug Enhancements

void APIENTRY DebugFunc(GlLenum source, GlLenum type, GlLuint id,
GLenum severity, GlLsizei length, const GLchar* message,

GLvoid* userParam);

// Register the callback
glDebugMessageCallback(DebugFunc, NULL);

// Enable debug messages and ensure they are not async
glEnable(GL_DEBUG_OUTPUT);
glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS);

Using Debug Enhancements Cnt’d

// Add a marker to the debug notations
glPushDebugGroup(GL_DEBUG_SOURCE_APPLICATION, DEPTH_FILL_ID, 11,
“Depth Fill”);

// Perform application rendering

Render Depth Only Pass();

// Closes the marker

glPopDebugGroup();

A Couple Caveats

= Callback environment is limited

— Unsafe to call OpenGL or windowing functions in a callback
— May be called asynchronously on a separate thread

= An enable can force it onto the thread at the cost of performance

= Callbacks do have cost
— Don’t leave this enabled by default in shipping code

= May want it as an option

» Information returned is largely free-form
— It will vary vendor to vendor
— Quality should improve over time

— Do not try to parse it in the app

Shader Improvements

= Separate Shader Objects
» Explicit layout qualifiers
» Shading language include

Why Separate Shader Objects?

» Classic OpenGL Shading Language required linking
— Inconvenient when dealing permutation of shader combinations
— 4 vertex shader x 3 fragment shaders meant 12 programs
— Additional dependencies on matching up inputs / outputs
— Growing number of shader stages makes the problem worse

Separate Shader Objects Diagram

Classic OpenGL OpenGL With SSO

Separate Shader Objects

» ARB_separate_shader_objects
= Allows a program to represent a single stage
= Allows a shader to compile/link in a single step

» [ntroduces new Program Pipeline object
— Has binding locations for all shader types

» Can still link multiple shaders into one program
— Bind program to multiple stages

» Switching the Pipeline Program object allows convenient
save/restore

Separate Shader Objects code

// Create shaders
GLuint fprog = glCreateShaderProgramv(GL_FRAGMENT SHADER, 1, &text);
GLuint vprog = glCreateShaderProgramv(GL_VERTEX_ SHADER, 1, &text);

// Bind pipeline
glGenProgramPipelines(1, &pipe);
glBindProgramPipelines(pipe);

// Bind shaders
glUseProgramStages(pipe, GL_FRAGMENT_SHADER BIT, fprog);
glUseProgramStages(pipe, GL_VERTEX SHADER BIT, vprog);

SSO Shader Modifications

* Need to declare input and output variables
— Built-ins must be redeclared

= May want to use explicit attribute locations

// Redeclare gl Position
out gl PerVertex { vec4d gl Position; };

// Explicitly set an attribute location
(layout location=2) out vec3 normal;

Explicit Binding

» Most resources can now have their location/binding
specified
» Three separate extensions
— ARB_explicit_attrib_location
— ARB_shading_language_420pack
— ARB_explicit_uniform_location
= Set unit for texture samplers

= [dentify attribute slots
— Attributes no longer match by name

= Set uniform buffer slots

Example

// specify the bind point for a buffer of uniform data
layout(binding=1) uniform ConstBuffer { .. };

//specify the bind point for a Sampler

layout(binding=2) uniform sampler2D texture;

// specify the buffer used to store normals for deferred shading

layout(location=3) out vec4 normalData;

Shader Language Include

» Feature to simplify sharing components between shaders
= Based on C preprocessor #include
* OpenGL lacks any real notion of a file system

» [ncludes must be registered as blocks of text prior to
reference

Texture Enhancements

» Texture Objects have been refactored
— Still function in the old way

» Textures now have logical sub-components
— Image data (texels)
— Sampling state (Filter, wrap, etc)
— Parameters (min/max mip)

= New interfaces allow different elements to be mixed

Texture Refactoring

Texture Object

Texture Storage

= ARB_texture_storage

» Simplified atomic creation interface for textures
» Classic OpenGL texture creation

— Levels created individually one at a time

— Allows for inconsistencies

— Enables application errors (accidentally changing a level)
= With texture image

— Single function call creates entire texture, including mipmaps
» Provides for immutable texture data

i e

::_,:‘__'—;_ > o
e~ é?%
- - 7 d

Texture Storage Usage

// Classic OpenGL texture creation
glBindTexture(GL_TEXTURE 2D, id);
for (i = 0; 1i<9, i++)
glTexImage2D(GL_TEXTURE_ 2D, i, GL_RGBA8, 256>>1i,
256>>i, @0, GL_RGBA, GL_FLOAT, NULL);

// DSA-style version with Texture Storage
glTextureStorage2DEXT(id, GL_TEXTURE2D, 9, GL_RGBAS,
256, 256);

Sampler Objects

* Allow decoupling of sampling state from texture object
= Allow multiple sampling modes on a texture
= Texture objects still contain state

— Sampler objects can just override the state
— Sampler object 0 means use the texture’s built-in sampler

= Sampler objects are API side only

— No GLSL changes, a GLSL sampler is the combined state
— Other APIs do this differently

Using Sampler Objects

// Generate sampler names

glGenSamplers(1, &samp);

// Set sampler parameters
glSamplerParameteri(samp, GL_TEXTURE_MIN FILTER, GL_NEAREST);

// Bind a texture to unit 3 and override its sampling state
glBindMultiTextureEXT(3, tex);
glBindSampler(3, samp);

Texture Views

= ARB_texture view

» A texture object that shares the texels of another texture

» Provides for the reinterpretation of texture data
— Slice of a 3D texture as a 2D texture

— Alias format types over one another

» Requires that the initial texture be created immutably

Texture Views

Copy Image

= Extremely a simple extension
= Remove the need to attach to FBO to perform a blit
= Cannot perform scaling or format conversions

= Does allow copy to compressed blocks
— RG32 -> COMPRESSED_RGB_S3TC_DXT1_EXT
— One texel maps to one compressed block

Pipeline Enhancements

» Tessellation Shading
» Compute Shading

Tessellation Shading

= Ability to convert a ‘patch’ primitive into many simple
primitives
= Sits between vertex shading and geometry shading
= Patch definition is up to the user
— Limited tessellation pattern templates

» Three additional stages in the graphic pipeline
— Two shader stages

» Per-patch and per-output vertex

— Fixed function point/topology generation stage

Tessellation Stages

Primitives out to GS
Triangles, Lines, etc

—

Vertices in from VS

Tessellation Control

» Shader used to form a patch

» Specifies several patch properties
— Number of vertices

— Tessellation domain (triangle, quad, lines)

= Computes level of tessellation

= Computes parameters shared across a patch
— Access to all vertices in the patch

= Multiple threads per patch

Tessellator

Evaluation
Points

U coordinate

U coordinate

91eUlpJo0d A

Tessellation Evaluation

» Shader responsible to compute final position
= Each thread computes one output vertex on a patch
» [nput data

— Parametric position on the patch (u,v) or (u,v,w)

— Patch data from control shader

Tessellation Shading How To

// Set the number of vertices per patch
glPatchParameteri(GL_PATCH_VERTICES, 16);

// Bind shader stages

glUseProgramStages(pipeline, GL_TESS CONTROL_SHADER BIT, control);
glUseProgramStages(pipeline, GL_TESS EVALUATION_SHADER BIT, eval);
// Set-up vertex arrays

// Draw a single patch
glDrawArrays(GL_PATCHES, @, 16);

Compute Shading

= Biggest change to OpenGL in a long time

= Completely unique pipeline not focused on generating pixels

= Allows the dispatch of kernel grids
— Similar to CUDA or OpenCL

Why OpenGL Compute Shaders?

* This is the GPU Technology Conference
— The desire for GPU computing needs no explanation

» [ntegration into OpenGL offers advantages

— Simpler synchronization and data interchange
— Common shading language

— Integrates well for operations tightly coupled with rendering
= Does it replace CUDA?
— No, lacks features and control

— GLSL compute support is designed around graphics

Compute Shader Diagram

3

What is a Compute Shader good for?

* [mage processing

— Blurs

— Tile-based algorithms (deferred shading)
» Simulation

— Particles

— Water

Compute Shader How To

//bind a compute shader
glUseProgramStages(pipeline, GL_COMPUTE_SHADER BIT, cs);

//bind a texture as a read/write image

glBindImageTexture(O, tex, ©, GL FALSE, ©, GL_WRITE_ONLY,
GL_RGBAS);

//Launch the 80x45 thread groups (enough for 1280x720 at 16x16)
glDispatchCompute(80, 45, 1);

Taking it Further

= Path Rendering
» Bindless Graphics

Path Rendering

» Unique rendering regime focused on 2D vector rendering
= Covers things like SVG, Flash, etc
» Offers great tools for text and Ul elements

= Central concept is stencil then cover
— Set stencil of path, then render pixels

» [nterface may feel a bit foreign to OpenGL programmers
— Desighed to mesh with other path rendering APls

Path Rendering Primitives

» Cubic curves

= Quadratic curves

* Lines

= Font glyphs

= Arcs

= Dash & Endcap Style

Path Rendering How To

//Compile an SVG path
glPathStringNV(pathObj, GL_PATH_FORMAT SVG_NV,
strlen(svgPathString), svgPathString);

//Fill a stencil of the path
glStencilFillPathNV(pathObj, GL_COUNT_UP_NV, Ox1F);

//configure stencil testing

//Cover the stencil
glCoverFillPathNV(pathObj, GL_BOUNDING_BOX_NV);

Bindless Graphics

* Move toward directly addressing graphics objects
— Pointers for GPUs

» GPUs have advanced and handles can be a bottleneck
— Driver cost of looking up, making resident, etc
— Flexibility cost in the shader (limited number of textures)
— QOverall cost of more draw calls, state changes, etc
= Different levels impacting different portions of the pipe

— Vertex fetching, uniforms, and textures

Bindless Vertex Data

» Vertex Buffer Unified Memory (VBUM)

= Allows the ‘Locking’ of buffer resources to obtain a GPU
pointer

= Separates vertex format state from object/offset

= Can amortize many setup operations and streamline driver
costs

= Can provide real performance gains
— As much as 30% has been acheived

Bindless Uniforms

= Shader Buffer Load/Store
» Similar advantages to vertices
— Lock object once, use many times

= Allows indirection on uniform data
— Uniform block can be a pointer
— Different pointer selected per instance/triangle/pixel

Bindless Textures

= Similar to other bindless extensions
» Enables per-pixel change of texture object

= Enables virtually limitless number of textures per shader
— No longer restricted to API bind points

Wrap-up

* OpenGL has changed a lot in the past few years
= OpenGL has gained many helpful features

— Easier development
— Easier porting
* OpenGL has continued to keep up with modern features
= OpenGL is developing new innovative features for the future

v
c
O
HE
n
v
-
o

