
OpenGL 4.x and Beyond

 Evan Hart

What is this about?

 OpenGL is an API with a lot of legacy

 OpenGL has evolved rapidly in the past 5 years

— More than 5 versions released

— Nearly 70 new ARB extensions in the past 2 years

 New features have brought a lot to the API

— Programming convenience and developer productivity

— Enhanced capabilities

Who does this talk address?

 Anyone considering adopting modern OpenGL features

— DirectX developers

— OpenGL ES developers

— OpenGL developers working with older versions

Agenda

 API-wide tools

 Shader improvements

 Texture improvements

 New shaders

 Advanced topics

API-wide Enhancements

 Allow for easier development and more productivity

 Touch entire breadth of OpenGL

 Crossover with the resource management

 Will not improve the speed or features of your application

— There are exceptions

Why Direct State Access?

 OpenGL is a stateful API with lots of switches

— glActiveTexture, glBindTexture, etc

 Selector and current states can make state changes verbose

— May need to bind / change active unit to set texture min filter

 Management of state becomes a burden as app complexity

grows

— Unknown state condition leads to extra setting

— Attempts to save/restore can be problematic

The solution

 EXT_direct_state_access (often abbreviated DSA)

 Add functions that operate on object/units directly

— Set a texture filter on a given texture object, not the current one

— Bind a texture to a specific unit, not the active unit

 Adds a very large number of new functions

— Covers stuff all the way back to OpenGL 1.x

 Most new extensions also contain a special DSA section

— Additional DSA functions

An Example

Without DSA

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_2D, id);

glTexParameteri(GL_TEXTURE_2D,

 GL_TEX_MIN_FILTER, GL_LINEAR);

With DSA

glTextureParameteriEXT(id,

 GL_TEXTURE_2D,

 GL_TEX_MIN_FILTER, GL_LINEAR);

Things DSA Supports

 Texture objects

 Vertex array objects

 Framebuffer objects

 Program objects

 Buffer objects

 Matrix stacks

 Lots of legacy stuff

Stuff DSA does not solve

 Will not improve performance

— When setting several properties, glBind* may be faster

— Drivers still improving, likely not noticeable

 Does not make it OK to set redundant state

— It can help save excess binding

 Does not make incoherent accesses fast

— Objects are independent pieces of memory, this is like pointer

chasing

Debugging Enhancements

 ARB_debug_output

 KHR_debug

— Newer, subsumes functionality of ARB_debug_output

— Adds label and marker functionality

How the debug enhancements help

Classic style

 glGetError is very invasive

 Must use in lots of places

 Adds overhead

 glGetError is very limited

 Handful of errors

 No levels / warnings

 InfoLog better

 Limited part of the API

New style

 Register a callback function

 Single piece of code invoked by

the driver

 No need for macros/wrappers

 Easily turned on/off

 Additional information

 Free-form error string

 Multiple levels (warnings)

Using Debug Enhancements

void APIENTRY DebugFunc(GLenum source, GLenum type, GLuint id,

 GLenum severity, GLsizei length, const GLchar* message,

 GLvoid* userParam);

// Register the callback

glDebugMessageCallback(DebugFunc, NULL);

// Enable debug messages and ensure they are not async

glEnable(GL_DEBUG_OUTPUT);

glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS);

Using Debug Enhancements Cnt’d

// Add a marker to the debug notations

glPushDebugGroup(GL_DEBUG_SOURCE_APPLICATION, DEPTH_FILL_ID, 11,

 “Depth Fill”);

// Perform application rendering

Render_Depth_Only_Pass();

// Closes the marker

glPopDebugGroup();

A Couple Caveats

 Callback environment is limited

— Unsafe to call OpenGL or windowing functions in a callback

— May be called asynchronously on a separate thread

 An enable can force it onto the thread at the cost of performance

 Callbacks do have cost

— Don‟t leave this enabled by default in shipping code

 May want it as an option

 Information returned is largely free-form

— It will vary vendor to vendor

— Quality should improve over time

— Do not try to parse it in the app

Shader Improvements

 Separate Shader Objects

 Explicit layout qualifiers

 Shading language include

Why Separate Shader Objects?

 Classic OpenGL Shading Language required linking

— Inconvenient when dealing permutation of shader combinations

— 4 vertex shader x 3 fragment shaders meant 12 programs

— Additional dependencies on matching up inputs / outputs

— Growing number of shader stages makes the problem worse

Separate Shader Objects Diagram

Classic GLSL

Program
Vertex Shader

Fragment Shader

OpenGL With SSO Classic OpenGL

P
ro

g
ra

m
 P

ip
e
lin

e

Vertex

Shader

Fragment

Shader

Separate Shader Objects

 ARB_separate_shader_objects

 Allows a program to represent a single stage

 Allows a shader to compile/link in a single step

 Introduces new Program Pipeline object

— Has binding locations for all shader types

 Can still link multiple shaders into one program

— Bind program to multiple stages

 Switching the Pipeline Program object allows convenient

save/restore

Separate Shader Objects code

// Create shaders

GLuint fprog = glCreateShaderProgramv(GL_FRAGMENT_SHADER, 1, &text);

GLuint vprog = glCreateShaderProgramv(GL_VERTEX_SHADER, 1, &text);

// Bind pipeline

glGenProgramPipelines(1, &pipe);

glBindProgramPipelines(pipe);

// Bind shaders

glUseProgramStages(pipe, GL_FRAGMENT_SHADER_BIT, fprog);

glUseProgramStages(pipe, GL_VERTEX_SHADER_BIT, vprog);

SSO Shader Modifications

 Need to declare input and output variables

— Built-ins must be redeclared

 May want to use explicit attribute locations

// Redeclare gl_Position

out gl_PerVertex { vec4 gl_Position; };

// Explicitly set an attribute location

(layout location=2) out vec3 normal;

Explicit Binding

 Most resources can now have their location/binding

specified

 Three separate extensions

— ARB_explicit_attrib_location

— ARB_shading_language_420pack

— ARB_explicit_uniform_location

 Set unit for texture samplers

 Identify attribute slots

— Attributes no longer match by name

 Set uniform buffer slots

 Set image slots

Example

// specify the bind point for a buffer of uniform data

layout(binding=1) uniform ConstBuffer { … };

//specify the bind point for a Sampler

layout(binding=2) uniform sampler2D texture;

// specify the buffer used to store normals for deferred shading

layout(location=3) out vec4 normalData;

Shader Language Include

 Feature to simplify sharing components between shaders

 Based on C preprocessor #include

 OpenGL lacks any real notion of a file system

 Includes must be registered as blocks of text prior to

reference

Texture Enhancements

 Texture Objects have been refactored

— Still function in the old way

 Textures now have logical sub-components

— Image data (texels)

— Sampling state (Filter, wrap, etc)

— Parameters (min/max mip)

 New interfaces allow different elements to be mixed

Texture Refactoring

Texture Data

Texels, may be shared

Sampler State

Filter, wrap, compare

View State

Format, Dimensions, Mips

Texture Object

Texture Storage

 ARB_texture_storage

 Simplified atomic creation interface for textures

 Classic OpenGL texture creation

— Levels created individually one at a time

— Allows for inconsistencies

— Enables application errors (accidentally changing a level)

 With texture image

— Single function call creates entire texture, including mipmaps

 Provides for immutable texture data

Texture Storage Usage

// Classic OpenGL texture creation

glBindTexture(GL_TEXTURE_2D, id);

for (i = 0; i<9, i++)

 glTexImage2D(GL_TEXTURE_2D, i, GL_RGBA8, 256>>i,

 256>>i, 0, GL_RGBA, GL_FLOAT, NULL);

// DSA-style version with Texture Storage

glTextureStorage2DEXT(id, GL_TEXTURE2D, 9, GL_RGBA8,

 256, 256);

Sampler Objects

 Allow decoupling of sampling state from texture object

 Allow multiple sampling modes on a texture

 Texture objects still contain state

— Sampler objects can just override the state

— Sampler object 0 means use the texture‟s built-in sampler

 Sampler objects are API side only

— No GLSL changes, a GLSL sampler is the combined state

— Other APIs do this differently

Using Sampler Objects

// Generate sampler names

glGenSamplers(1, &samp);

// Set sampler parameters

glSamplerParameteri(samp, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

…

// Bind a texture to unit 3 and override its sampling state

glBindMultiTextureEXT(3, tex);

glBindSampler(3, samp);

Texture Views

 ARB_texture_view

 A texture object that shares the texels of another texture

 Provides for the reinterpretation of texture data

— Slice of a 3D texture as a 2D texture

— Alias format types over one another

 Requires that the initial texture be created immutably

Texture Views

Texel Data

Sampler

State

Format

3D

Width = 64

Height = 64

Width = 64

Format =

RGBA8

Texel Data

Reference

Sampler

State

Format

2D

Width = 64

Height = 64

Format =

R32UI

Texture Object Texture View

Copy Image

 Extremely a simple extension

 Remove the need to attach to FBO to perform a blit

 Cannot perform scaling or format conversions

 Does allow copy to compressed blocks

— RG32 -> COMPRESSED_RGB_S3TC_DXT1_EXT

— One texel maps to one compressed block

Pipeline Enhancements

 Tessellation Shading

 Compute Shading

Tessellation Shading

 Ability to convert a „patch‟ primitive into many simple

primitives

 Sits between vertex shading and geometry shading

 Patch definition is up to the user

— Limited tessellation pattern templates

 Three additional stages in the graphic pipeline

— Two shader stages

 Per-patch and per-output vertex

— Fixed function point/topology generation stage

Tessellation Stages

Tessellation

Control

Tessellation

Evaluation

T
e
sse

la
to

r

Primitives out to GS

Triangles, Lines, etc
Vertices in from VS

Tessellation Control

 Shader used to form a patch

 Specifies several patch properties

— Number of vertices

— Tessellation domain (triangle, quad, lines)

 Computes level of tessellation

 Computes parameters shared across a patch

— Access to all vertices in the patch

 Multiple threads per patch

Tessellator
Evaluation

Points

U coordinate

V
 c

o
o
rd

in
a
te

U coordinate

Tessellation Evaluation

 Shader responsible to compute final position

 Each thread computes one output vertex on a patch

 Input data

— Parametric position on the patch (u,v) or (u,v,w)

— Patch data from control shader

Tessellation Shading How To
// Set the number of vertices per patch

glPatchParameteri(GL_PATCH_VERTICES, 16);

// Bind shader stages

glUseProgramStages(pipeline, GL_TESS_CONTROL_SHADER_BIT, control);

glUseProgramStages(pipeline, GL_TESS_EVALUATION_SHADER_BIT, eval);

// Set-up vertex arrays

…

// Draw a single patch

glDrawArrays(GL_PATCHES, 0, 16);

Compute Shading

 Biggest change to OpenGL in a long time

 Completely unique pipeline not focused on generating pixels

 Allows the dispatch of kernel grids

— Similar to CUDA or OpenCL

Why OpenGL Compute Shaders?

 This is the GPU Technology Conference

— The desire for GPU computing needs no explanation

 Integration into OpenGL offers advantages

— Simpler synchronization and data interchange

— Common shading language

— Integrates well for operations tightly coupled with rendering

 Does it replace CUDA?

— No, lacks features and control

— GLSL compute support is designed around graphics

Thread Group

Compute Shader Diagram

Thread Group
Thread Group

Thread Group
Thread Group

Thread Group
Thread Group

Thread Group
Thread Group

Thread Group
Thread Group

What is a Compute Shader good for?

 Image processing

— Blurs

— Tile-based algorithms (deferred shading)

 Simulation

— Particles

— Water

Compute Shader How To

//bind a compute shader

glUseProgramStages(pipeline, GL_COMPUTE_SHADER_BIT, cs);

//bind a texture as a read/write image

glBindImageTexture(0, tex, 0, GL_FALSE, 0, GL_WRITE_ONLY,
GL_RGBA8);

//Launch the 80x45 thread groups (enough for 1280x720 at 16x16)

glDispatchCompute(80, 45, 1);

Taking it Further

 Path Rendering

 Bindless Graphics

Path Rendering

 Unique rendering regime focused on 2D vector rendering

 Covers things like SVG, Flash, etc

 Offers great tools for text and UI elements

 Central concept is stencil then cover

— Set stencil of path, then render pixels

 Interface may feel a bit foreign to OpenGL programmers

— Designed to mesh with other path rendering APIs

Path Rendering Primitives

 Cubic curves

 Quadratic curves

 Lines

 Font glyphs

 Arcs

 Dash & Endcap Style

Path Rendering How To

//Compile an SVG path

glPathStringNV(pathObj, GL_PATH_FORMAT_SVG_NV,

 strlen(svgPathString), svgPathString);

//Fill a stencil of the path

glStencilFillPathNV(pathObj, GL_COUNT_UP_NV, 0x1F);

//configure stencil testing

//Cover the stencil

glCoverFillPathNV(pathObj, GL_BOUNDING_BOX_NV);

Bindless Graphics

 Move toward directly addressing graphics objects

— Pointers for GPUs

 GPUs have advanced and handles can be a bottleneck

— Driver cost of looking up, making resident, etc

— Flexibility cost in the shader (limited number of textures)

— Overall cost of more draw calls, state changes, etc

 Different levels impacting different portions of the pipe

— Vertex fetching, uniforms, and textures

Bindless Vertex Data

 Vertex Buffer Unified Memory (VBUM)

 Allows the „Locking‟ of buffer resources to obtain a GPU

pointer

 Separates vertex format state from object/offset

 Can amortize many setup operations and streamline driver

costs

 Can provide real performance gains

— As much as 30% has been acheived

Bindless Uniforms

 Shader Buffer Load/Store

 Similar advantages to vertices

— Lock object once, use many times

 Allows indirection on uniform data

— Uniform block can be a pointer

— Different pointer selected per instance/triangle/pixel

Bindless Textures

 Similar to other bindless extensions

 Enables per-pixel change of texture object

 Enables virtually limitless number of textures per shader

— No longer restricted to API bind points

Wrap-up

 OpenGL has changed a lot in the past few years

 OpenGL has gained many helpful features

— Easier development

— Easier porting

 OpenGL has continued to keep up with modern features

 OpenGL is developing new innovative features for the future

Questions

?

