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What is this about? 

 OpenGL is an API with a lot of legacy 

 OpenGL has evolved rapidly in the past 5 years 

— More than 5 versions released 

— Nearly 70 new ARB extensions in the past 2 years 

 New features have brought a lot to the API 

— Programming convenience and developer productivity 

— Enhanced capabilities  



Who does this talk address? 

 Anyone considering adopting modern OpenGL features 

— DirectX developers 

— OpenGL ES developers 

— OpenGL developers working with older versions 

 



Agenda 

 API-wide tools 

 Shader improvements 

 Texture improvements 

 New shaders 

 Advanced topics 



API-wide Enhancements 

 Allow for easier development and more productivity 

 Touch entire breadth of OpenGL 

 Crossover with the resource management 

 Will not improve the speed or features of your application 

— There are exceptions 

 



Why Direct State Access? 

 OpenGL is a stateful API with lots of switches 

— glActiveTexture, glBindTexture, etc 

 Selector and current states can make state changes verbose 

— May need to bind / change active unit to set texture min filter 

 Management of state becomes a burden as app complexity 

grows 

— Unknown state condition leads to extra setting 

— Attempts to save/restore can be problematic 



The solution 

 EXT_direct_state_access (often abbreviated DSA) 

 Add functions that operate on object/units directly 

— Set a texture filter on a given texture object, not the current one 

— Bind a texture to a specific unit, not the active unit 

 Adds a very large number of new functions 

— Covers stuff all the way back to OpenGL 1.x 

 Most new extensions also contain a special DSA section 

— Additional DSA functions 



An Example 

Without DSA 

 

glActiveTexture( GL_TEXTURE0); 

glBindTexture( GL_TEXTURE_2D, id); 

glTexParameteri( GL_TEXTURE_2D, 

  GL_TEX_MIN_FILTER, GL_LINEAR); 

 

With DSA 

 

glTextureParameteriEXT( id, 

  GL_TEXTURE_2D, 

  GL_TEX_MIN_FILTER, GL_LINEAR); 



Things DSA Supports 

 Texture objects 

 Vertex array objects 

 Framebuffer objects 

 Program objects 

 Buffer objects 

 Matrix stacks 

 Lots of legacy stuff 

 



Stuff DSA does not solve 

 Will not improve performance 

— When setting several properties, glBind* may be faster 

— Drivers still improving, likely not noticeable 

 

 Does not make it OK to set redundant state 

— It can help save excess binding 

 

 Does not make incoherent accesses fast 

— Objects are independent pieces of memory, this is like pointer 

chasing 



Debugging Enhancements 

 ARB_debug_output 

 

 KHR_debug 

— Newer, subsumes functionality of ARB_debug_output 

— Adds label and marker functionality 



How the debug enhancements help 

Classic style 

 glGetError is very invasive 

 Must use in lots of places 

 Adds overhead 

 glGetError is very limited 

 Handful of errors 

 No levels / warnings 

 InfoLog better 

 Limited part of the API 

 

New style 

 Register a callback function 

 Single piece of code invoked by 

the driver 

 No need for macros/wrappers 

 Easily turned on/off 

 Additional information 

 Free-form error string 

 Multiple levels (warnings) 



Using Debug Enhancements 

void APIENTRY DebugFunc( GLenum source, GLenum type, GLuint id, 

 GLenum severity, GLsizei length, const GLchar* message, 

 GLvoid* userParam); 

 

// Register the callback 

glDebugMessageCallback( DebugFunc, NULL); 

 

// Enable debug messages and ensure they are not async 

glEnable( GL_DEBUG_OUTPUT); 

glEnable( GL_DEBUG_OUTPUT_SYNCHRONOUS); 

 



Using Debug Enhancements Cnt’d 

// Add a marker to the debug notations  

glPushDebugGroup( GL_DEBUG_SOURCE_APPLICATION, DEPTH_FILL_ID, 11, 

  “Depth Fill”); 

 

// Perform application rendering 

Render_Depth_Only_Pass(); 

 

// Closes the marker 

glPopDebugGroup(); 

 



A Couple Caveats 

 Callback environment is limited 

— Unsafe to call OpenGL or windowing functions in a callback 

— May be called asynchronously on a separate thread 

 An enable can force it onto the thread at the cost of performance 

 Callbacks do have cost 

— Don‟t leave this enabled by default in shipping code 

 May want it as an option 

 Information returned is largely free-form 

— It will vary vendor to vendor 

— Quality should improve over time 

— Do not try to parse it in the app 



Shader Improvements 

 Separate Shader Objects 

 Explicit layout qualifiers 

 Shading language include 



Why Separate Shader Objects? 

 Classic OpenGL Shading Language required linking 

— Inconvenient when dealing permutation of shader combinations 

— 4 vertex shader x 3 fragment shaders meant 12 programs 

— Additional dependencies on matching up inputs / outputs 

— Growing number of shader stages makes the problem worse 



Separate Shader Objects Diagram 
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Separate Shader Objects 

 ARB_separate_shader_objects 

 Allows a program to represent a single stage 

 Allows a shader to compile/link in a single step 

 Introduces new Program Pipeline object 

— Has binding locations for all shader types 

 Can still link multiple shaders into one program 

— Bind program to multiple stages 

 Switching the Pipeline Program object allows convenient 

save/restore  



Separate Shader Objects code 

// Create shaders 

GLuint fprog = glCreateShaderProgramv( GL_FRAGMENT_SHADER, 1, &text); 

GLuint vprog = glCreateShaderProgramv( GL_VERTEX_SHADER, 1, &text); 

 

// Bind pipeline 

glGenProgramPipelines( 1, &pipe); 

glBindProgramPipelines( pipe); 

 

// Bind shaders 

glUseProgramStages( pipe, GL_FRAGMENT_SHADER_BIT, fprog); 

glUseProgramStages( pipe, GL_VERTEX_SHADER_BIT, vprog); 

 



SSO Shader Modifications 

 Need to declare input and output variables 

— Built-ins must be redeclared 

 May want to use explicit attribute locations 

 

// Redeclare gl_Position 

out gl_PerVertex { vec4  gl_Position; }; 

 

// Explicitly set an attribute location 

(layout location=2) out vec3 normal; 

 



Explicit Binding 

 Most resources can now have their location/binding 

specified 

 Three separate extensions 

— ARB_explicit_attrib_location 

— ARB_shading_language_420pack 

— ARB_explicit_uniform_location 

 Set unit for texture samplers 

 Identify attribute slots 

— Attributes no longer match by name 

 Set uniform buffer slots 

 Set image slots 



Example 

// specify the bind point for a buffer of uniform data 

layout( binding=1) uniform ConstBuffer { … }; 

 

//specify the bind point for a Sampler 

layout( binding=2) uniform sampler2D texture; 

 

// specify the buffer used to store normals for deferred shading 

layout( location=3) out vec4 normalData; 



Shader Language Include 

 Feature to simplify sharing components between shaders 

 Based on C preprocessor #include 

 OpenGL lacks any real notion of a file system 

 Includes must be registered as blocks of text prior to 

reference 



Texture Enhancements 

 Texture Objects have been refactored 

— Still function in the old way 

 

 Textures now have logical sub-components 

— Image data (texels) 

— Sampling state (Filter, wrap, etc) 

— Parameters (min/max mip) 

 

 New interfaces allow different elements to be mixed 



Texture Refactoring 
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Texture Storage 

 ARB_texture_storage 

 Simplified atomic creation interface for textures 

 Classic OpenGL texture creation  

— Levels created individually one at a time 

— Allows for inconsistencies 

— Enables application errors (accidentally changing a level) 

 With texture image 

— Single function call creates entire texture, including mipmaps 

 Provides for immutable texture data 



Texture Storage Usage 

// Classic OpenGL texture creation 

glBindTexture( GL_TEXTURE_2D, id); 

for (i = 0; i<9, i++) 

  glTexImage2D( GL_TEXTURE_2D, i, GL_RGBA8, 256>>i, 

                256>>i, 0, GL_RGBA, GL_FLOAT, NULL); 

 

// DSA-style version with Texture Storage 

glTextureStorage2DEXT( id, GL_TEXTURE2D, 9, GL_RGBA8, 

                       256, 256); 

 



Sampler Objects 

 Allow decoupling of sampling state from texture object 

 Allow multiple sampling modes on a texture 

 Texture objects still contain state 

— Sampler objects can just override the state 

— Sampler object 0 means use the texture‟s built-in sampler 

 Sampler objects are API side only 

— No GLSL changes, a GLSL sampler is the combined state 

— Other APIs do this differently 



Using Sampler Objects 

// Generate sampler names 

glGenSamplers( 1, &samp); 

 

// Set sampler parameters  

glSamplerParameteri( samp, GL_TEXTURE_MIN_FILTER, GL_NEAREST); 

… 

 

// Bind a texture to unit 3 and override its sampling state 

glBindMultiTextureEXT( 3, tex); 

glBindSampler( 3, samp); 



Texture Views 

 ARB_texture_view 

 A texture object that shares the texels of another texture 

 Provides for the reinterpretation of texture data 

— Slice of a 3D texture as a 2D texture 

— Alias format types over one another 

 Requires that the initial texture be created immutably 
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Copy Image 

 Extremely a simple extension 

 Remove the need to attach to FBO to perform a blit 

 Cannot perform scaling or format conversions 

 Does allow copy to compressed blocks 

— RG32 -> COMPRESSED_RGB_S3TC_DXT1_EXT 

— One texel maps to one compressed block 



Pipeline Enhancements 

 Tessellation Shading 

 Compute Shading 



Tessellation Shading 

 Ability to convert a „patch‟ primitive into many simple 

primitives 

 Sits between vertex shading and geometry shading 

 Patch definition is up to the user 

— Limited tessellation pattern templates 

 Three additional stages in the graphic pipeline 

— Two shader stages 

 Per-patch and per-output vertex 

— Fixed function point/topology generation stage 



Tessellation Stages 
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Tessellation Control 

 Shader used to form a patch 

 Specifies several patch properties 

— Number of vertices 

— Tessellation domain (triangle, quad, lines) 

 Computes level of tessellation 

 Computes parameters shared across a patch 

— Access to all vertices in the patch 

 Multiple threads per patch 
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Tessellation Evaluation 

 Shader responsible to compute final position 

 Each thread computes one output vertex on a patch 

 Input data  

— Parametric position on the patch (u,v) or (u,v,w) 

— Patch data from control shader 



Tessellation Shading How To 
// Set the number of vertices per patch 

glPatchParameteri( GL_PATCH_VERTICES, 16); 

 

// Bind shader stages 

glUseProgramStages( pipeline, GL_TESS_CONTROL_SHADER_BIT, control); 

glUseProgramStages( pipeline, GL_TESS_EVALUATION_SHADER_BIT, eval); 

 

// Set-up vertex arrays 

… 

 

// Draw a single patch 

glDrawArrays( GL_PATCHES, 0, 16); 

 

 



Compute Shading 

 Biggest change to OpenGL in a long time 

 Completely unique pipeline not focused on generating pixels 

 Allows the dispatch of kernel grids 

— Similar to CUDA or OpenCL 



Why OpenGL Compute Shaders? 

 This is the GPU Technology Conference 

— The desire for GPU computing needs no explanation 

 Integration into OpenGL offers advantages 

— Simpler synchronization and data interchange 

— Common shading language 

— Integrates well for operations tightly coupled with rendering 

 Does it replace CUDA? 

— No, lacks features and control 

— GLSL compute support is designed around graphics 



Thread Group 

Compute Shader Diagram 
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What is a Compute Shader good for? 

 Image processing 

— Blurs 

— Tile-based algorithms (deferred shading) 

 Simulation 

— Particles 

— Water 



Compute Shader How To 

 

//bind a compute shader 

glUseProgramStages( pipeline, GL_COMPUTE_SHADER_BIT, cs); 

 

//bind a texture as a read/write image 

glBindImageTexture( 0, tex, 0, GL_FALSE, 0, GL_WRITE_ONLY, 
GL_RGBA8); 

 

//Launch the 80x45 thread groups (enough for 1280x720 at 16x16) 

glDispatchCompute( 80, 45, 1); 

 



Taking it Further 

 Path Rendering 

 Bindless Graphics 



Path Rendering 

 Unique rendering regime focused on 2D vector rendering 

 Covers things like SVG, Flash, etc 

 Offers great tools for text and UI elements 

 Central concept is stencil then cover 

— Set stencil of path, then render pixels 

 Interface may feel a bit foreign to OpenGL programmers 

— Designed to mesh with other path rendering APIs 



Path Rendering Primitives 

 Cubic curves 

 Quadratic curves 

 Lines 

 Font glyphs 

 Arcs 

 Dash & Endcap Style 



Path Rendering How To 

//Compile an SVG path 

glPathStringNV( pathObj, GL_PATH_FORMAT_SVG_NV, 

                strlen(svgPathString), svgPathString); 

 

//Fill a stencil of the path 

glStencilFillPathNV( pathObj, GL_COUNT_UP_NV, 0x1F); 

 

//configure stencil testing 

 

//Cover the stencil 

glCoverFillPathNV( pathObj, GL_BOUNDING_BOX_NV); 

 

 



Bindless Graphics 

 Move toward directly addressing graphics objects 

— Pointers for GPUs 

 GPUs have advanced and handles can be a bottleneck 

— Driver cost of looking up, making resident, etc 

— Flexibility cost in the shader (limited number of textures) 

— Overall cost of more draw calls, state changes, etc 

 Different levels impacting different portions of the pipe 

— Vertex fetching, uniforms, and textures 



Bindless Vertex Data 

 Vertex Buffer Unified Memory (VBUM) 

 Allows the „Locking‟ of buffer resources to obtain a GPU 

pointer 

 Separates vertex format state from object/offset 

 Can amortize many setup operations and streamline driver 

costs 

 Can provide real performance gains 

— As much as 30% has been acheived 



Bindless Uniforms 

 Shader Buffer Load/Store 

 Similar advantages to vertices 

— Lock object once, use many times 

 Allows indirection on uniform data 

— Uniform block can be a pointer 

— Different pointer selected per instance/triangle/pixel 



Bindless Textures 

 Similar to other bindless extensions 

 Enables per-pixel change of texture object 

 Enables virtually limitless number of textures per shader 

— No longer restricted to API bind points 



Wrap-up 

 OpenGL has changed a lot in the past few years 

 OpenGL has gained many helpful features 

— Easier development 

— Easier porting 

 OpenGL has continued to keep up with modern features 

 OpenGL is developing new innovative features for the future 



Questions 

? 


