
NVIDIA Nsight™ VSE 3.0
Catzilla Engine Development in
DirectX® 11 and OpenGL 4.2

Jeff Kiel – NVIDIA Corporation

Michal Szymczyk – CTO, Plastic

Michal Staniszewski – Creative Director, Plastic

Agenda

Catzilla Demo/Benchmark

Developed by Plastic, Platige Image and ALLPlayer

OpenGL 4.2 and DirectX®

NVIDIA Nsight Visual Studio Edition Overview

Problems During Development & Nsight Helped

Q&A

Motivation behind the project

There was a chance to do it – European Union Competitiveness &

Innovation Programme (CIP)

Old engine was completely tailored for PS3(Datura® development)

We wanted to prepare new engine for next gen machines

Development timeline

Engine development before preproduction started – 2 months

Preproduction - 1 month

Production – 2 months

Post Production – 2 months, 6 months total

Demo

Features of the engine

Post processing (HDR, adaptive luminance, DOF with Bokeh)

Fur based on geometry shader generated fins

Physically based lighting

Engine completely integrated with Autodesk®Maya

OpenGL/DirectX® 11

OpenGL needed because of WindowsXP support, possibility to port

to MacOSX and Linux

Still using OpenGL inside of Autodesk®Maya

Possibility to compare performance between two APIs

DirectX still faster?

Benchmark modes

Physics - CPU based using PhysX® - test

Fur (Geometry Shaders) test

Fluid (GPU Memory Bandwidth) test

Raymarching (GPU ALU) test

NVIDIA Nsight Visual Studio Edition
Visual Studio integrated development for GPU and CPU

Profile Debug Build

NVIDIA Nsight Visual Studio Edition
Supports Direct3D 9/11 and OpenGL 4.2

Frame Profiler

• Automatic GPU bottleneck determination

• Draw call and frame timings

• Direct3D Perf Markers and render state grouping/sorting

Application and System Trace
• Inspect Direct3D & OpenGL, CPU & GPU workloads

• Correlate threads, call stack, API calls, WDDM kernel

queues and resulting GPU workloads

• Concurrent draw call execution and memory transfer trace

Frame Debugger
• HUD for scene scrubbing

• State inspection at each draw call

• Real time frame capture and replay

• Source code serialization for D3D9/11

HLSL and GLSL Shader Debugger

• Native GPU shader debugging and GPU memory views

• Complex conditional breakpoints and Pixel History

• Local, single GPU shader debugging

Problems During Development
 #1 Broken Bokeh Filter

Use similar algorithm to

what DICE showed at

SIGGRAPH 2011

Bokeh pass has extra bright

lines & chess board pattern

Problems During Development
 #1 Broken Bokeh Filter

Bug repro using D3D source

generation for captured

frames…edit generated code to

quickly try debugging ideas

Problems During Development
 #1 Broken Bokeh Filter

Pixel History helps narrow

down the draw calls

Problems During Development
 #1 Broken Bokeh Filter

Dynamic Shader Editing to

test the bug fix

Problems During Development
 #2 Redundant State Changes

Analysis Summary shows

high API Call (8615.6) to

Draw Call (1012) ratio

Problems During Development
 #2 Redundant State Changes

Redundant state calls

Look at Event List to help

confirm redundant state

calls

Problems During Development
 #2 Redundant State Changes

API Inspector allows you to make

sure that code edits to remove

redundant calls didn’t break anything

Problems During Development
 #2 Redundant State Changes

Reduced call ratio resulted in average

of 15% decrease in frame time

Problems During Development
 #3 glMapBufferRange too expensive

3000 calls to glMapBufferRange taking

62% of the frame time

Problems During Development
 #3 glMapBufferRange too expensive

Looked at other possible

solutions like buffer pool with

fences but hurt SLI performance

Turned out it was bad flags…was passing

(GL_MAP_WRITE_BIT |

GL_MAP_INVALIDATE_BUFFER_BIT |

GL_MAP_UNSYNCHRONIZED_BIT)

but the invalidate caused the driver to make

too many temporary buffers

Problems During Development
 #3 glMapBufferRange too expensive

Fix the flags, let the driver manage the

memory, and perf improved!

Problems During Development
 #4 Bug in SW culling

Scrubbing through the scene & saw

items showing in depth buffer that

never impacted the scene…

Using SW based method based on

presentation by Daniel Conlin from

DICE at GDC 2011

Problems During Development
 #4 Bug in SW culling

ZCull activity in the profiler confirms

the objects are not going to show…

Problems During Development
 #4 Bug in SW culling Note new summary screen for OpenGL

Frame Profiler. Bars show unit bottleneck

values and blue boxes will have red

outline for areas of interest

Problems During Development
 #4 Bug in SW culling

Found bug in the linear depth

calculation, reduced scenes by

400-500 draw calls

Problems During Rendering
 #5 Indepth look at Raymarch Test

Benchmark designed to be GPU

bound…target process showing GPU

busy 100% of the time…that’s good!

Problems During Rendering
 #5 Indepth look at Raymarch Test

Main thread active all of the

time…repeating frame pattern

NVTX used to annotate the frame to help

see what was happening in the scene

Problems During Rendering
 #5 Indepth look at Raymarch Test

CPU is 2 frames behind the GPU, as

expected for GPU bound app

Row tooltips show per frame stats, Draw

Call row shows concurrent draw calls

Problems During Rendering
 #5 Indepth look at Raymarch Test

3.0 includes WDDM tracing, green bars

are packets with swap/present calls

Wrapping Up

Questions/Comments?

Resources

Info: https://developer.nvidia.com

Forums: https://devtalk.nvidia.com

Downloads

http://www.nvidia.com/nsight

http://www.allbenchmark.com/download

GDC Exhibit Booth: #1602

http://developer.nvidia.com/
https://devtalk.nvidia.com/
http://www.nvidia.com/nsight
http://www.allbenchmark.com/download

