0
!
AeRAen
Ao
Ao
Y

L
‘) 1
L

u?a??\-e
JOANAN
DO
aee.aee--.
AN

<A NVIDIA.

PIDIIIIIIIIIIIIIII SISV NI I NI AN I DD
PIIIIIIIPIIIIIIIIIII NI NI AN NI I
FIIIIIIIIIIIIIIR SIS v ’

-.

KIIIIISIsss s
e

s PIVsI s s
PIIIII sty
FrIssssss ey
e
sosssssy
ssss0s

1on

Corporat

Elimi
Waste

s
L]

John McDonald, NVI



Memory Consumption

® Modern games consume a lot
of memory

® The largest class of memory
usage Is textures

® But lots of texture is wasted!

® Waste costs both memory and
Increased load times

NVIDIA Corporation © 2013

=

NVIDIA

m Back/Front

m Ghuffer
Textures

mVB/IB

® Simulation



Wasted?! >

NVIDIA.

(WER(E

® Two sources of texture waste:
* Unmapped texture storage (major)

® Duplicated texels to help
alleviate visible seams (minor)

® This cannot eliminate seams.

http://www.boogotti.com/root/images/face/dffuse_texture.jpg

NVIDIA Corporation © 2013



Wasted?! >

NVIDIA.

® Two sources of texture waste:
* Unmapped texture storage (major)

® Duplicated texels to help
alleviate visible seams (minor)

® This cannot eliminate seams.

http://www.boogotti.com/root/images/face/dffuse_texture.jpg

NVIDIA Corporation © 2013



How much waste are we talking? <3

NVIDIA

* Nearly 60% of memory usage in a modern game* is texture usage
* And up to 30% of that is waste.

¢ That’s 18% of your total application footprint.

NVIDIA Corporation © 2013



Memory Waste N>

NVIDIA

*18% of your memory Is useless.
*18% of your load time Is wasted.

NVIDIA Corporation © 2013



Enter Ptex (a quick recap) ,f,?zm

® The soul of Ptex:

®

NVIDIA Corporation © 2013

Model with Quads instead of Triangles

* You’'re doing this for your next-gen engine anyways, right?
Every Quad gets its own entire texture UV-space, _=
UV orientation is implicit in surface | -;@t N L%
definition f
No explicit UV parameterization

Resolution of each face is
independent of neighbors.




Ptex (cont’d) N>

NVIDIA

Invented by Brent Burley at Walt Disney Animation Studios

Used in every animated film at Disney since 207

* 6 features and all shorts, plus everything i =
production now and for the foreseeable
future

Used on ~100% of surfaces
Rapid adoption in DCC tools

Widespread usage throughout
the film industry

NVIDIA Corporation © 2013



<3

Ptex benefits VDA

No UV unwraps

* Allow artists to work at any resolution they want

Perform an offline pass on assets to decide what to ship for each
platform based on capabilities

* Ship atexture pack later for tail revenue

Reduce your load times. And your memory footprint. Improve
your visual fidelity.

* Reduce the cost of production’s long pole—art.

NVIDIA Corporation © 2013



Demo <

NVIDIA

Demo is running on a Titan.
Sorry, it’s what we have at the show. ®
I’'ve run on 430-680—perf scales linearly with Texture/FB.

Could run on any Dx11 capable GPU.
Could also run on Dx10 capable GPUs with small adaptations.

* OpenGL 4—no vendor-specific extensions.

NVIDIA Corporation © 2013



Roadmap: Realtime Ptex v1 <

NVIDIA

Bucket Generate Fill

-
20c Mipmaps Borders Texture

Sort

Reorder Pack

Index Patch
Buffer Constants

Render Green: Patch Constant information
Blue: Texel data

Orange: Adjacency information

NVIDIA Corporation © 2013



Roadmap: Realtime Ptex v2

NVIDIA Corporation © 2013

Pack
Patch
Constants

Render

Pack

Texture
Arrays

Green: Patch Constant information
Blue: Texel data
Orange: Adjacency information

<3

NVIDIA



<3

Realtime Ptex v2 ey

Instead of copying texels into a border region, just go look at
them.
Use clamp to edge (border color), with a border color of (0,0,0,0)

This makes those lookups fast.
Also lets you know how close to the edge you are

* We'll need to transform our UVs into their UV space
®* And accumulate the results
* Waste factor? 0*.

NVIDIA Corporation © 2013



Example Model N>

NVIDIA.

VB: ...

NVIDIA Corporation © 2013



Load Model S,%A

* Vertex Data
Any geometry arranged as a quad-based mesh
Example: Wavefront OBJ

Patch Texture
Power-of-two texture images
* Adjacency Information
4 Neighbors of each quad patch

* Easily load texture and adjacency with OSS library available from
http://ptex.us/

NVIDIA Corporation © 2013


http://ptex.us/

Texture Arrays N>

NVIDIA

* Like 3D/ Volume Textures, except:
* No filtering between 2D slices
* Only X and Y decrease with mipmap level (Z doesn’t)
* Zindexed by integer index, not [0,1]
®* E.g. (0.5, 0.5, 4) would be (0.5, 0.5) from the 5" slice
* API Support
® Direct3D 10+: Texture2DArray
* OpenGL 3.0+;: GL_TEXTURE_2D ARRAY

NVIDIA Corporation © 2013



Arrays of Texture Arrays >

NVIDIA

* Both GLSL and HLSL* support arrays of TextureArrays.
* This allows for stupidly powerful abuse of texturing.

Texture2DArray albedo[32]; // D3D
uniform sampler2DArray albedo[32]; // OpenGL

* HLSL support requires a little codegen—but it’s entirely a compile-time exercise,
no runtime impact.

NVIDIA Corporation © 2013



Pack Texture Arrays <3

NVIDIA.

® One Texture2DArray per top-mipmap level
* Store with complete with mipmap chain

* Don’t forget to set border color to black (with 0 alpha).

NVIDIA Corporation © 2013



Packed Arrays >

NVIDIA.

Texture Array (TA) O TA2

Slice 0 Slice O

NVIDIA Corporation © 2013



Pack Patch Constants <

NVIDIA

¢ Create a constant-buffer indexed by struct PTexParameters {
T . ] ushort usNgbrIndex[4];
PrimitivelD. Each entry contains: ushort usNgbrXform[4]:
® Your Array Index and Slice in the ushort usTexIndex;
ushort usTexSlice;
Texture2DArrays };
® Your four neighbors across the edges , :
uniform ptxDiffuseUBO {
¢ Each nEighbor’S UV orientation PTexParameters ptxDiffuse[PRIMS];

};

® (Again, can be prepared at baking time)

® If rendering too many primitives
to fit into a constant buffer,
you can use Structured Buffers / SSBO for storage.

NVIDIA Corporation © 2013



Rendering time (CPU) rSTleA

® Bind Texture2DArrays
¢ (If you’re in GL, consider Bindless)

® Select Shader
® Setup Constants

NVIDIA Corporation © 2013



Rendering Time (DS) N>

NVIDIA

* In the domain shader, we need to generate our UVSs.
* Use SV_DomainLocation. L

* Exact mapping is dependent on
DCC tool used to generate
the mesh

Incorrect surface

NVIDIA Corporation © 2013



Rendering Time (PS) N>

NVIDIA

® Conceptually, a ptex lookup is:
¢ Sample our surface (use SV_PrimitivelD to determine our data).

* For each neighbor:
® Transform our UV into their UV space
® Perform alookup in that surface with transformed UVs

® Accumulate the result, correct for base-level differences and return

NVIDIA Corporation © 2013



Mapping Space

® There are 16 cases that
map our UV space to our
neighbors, as shown.

b
u =u
v =v+1

v =2-u

n"

u =v
V=1

<. <,

=

<. =

‘.l

WAl
A

EN

<. &
[

[l
'—|*I
<



Transforming Space

# Conveniently these map
to simple 3x2 texture
transforms

>

NVIDIA

0 -1 0

1

S -

1
= O

0O O

0—1]
1 0

o r
|
B

e
(=B

|
Hol.

= O



All your base rSTZmA

* Base level differences, wah?

* When a 512x512 neighbors a 256x256, their base levels are
different.

® This is an issue because samples are constant-sized in texel
(integer) space, not UV (float) space

Bad seaming

NVIDIA Corporation © 2013



Renormalization <A

NVIDIA

® With unused alpha channel, code is simply:
result / result.a;

* If you need alpha, see appendix

Bad seaming

NVIDIA Corporation © 2013



0% Waste? <

NVIDIA

Okay, not quite 0.

Need a global set of textures that match ptex resolutions used.
“Standard Candles”

But they are one-channel, and can be massively compressed (4 bits

per pixel)

<5 megs of overhead, regardless of texture footprint
For actual games, more like 1K of overhead.

Could be eliminated, but at the cost of some shader complexity.

Not needed for:
Textures without alpha
Textures used for Normal Maps
Textures less than 32 bytes per pixel

NVIDIA Corporation © 2013



A brief interlude on the expense of retrieving S,TZD,A
texels from textured surfaces

»

Texture lookups by themselves are not expensive.

There are fundamentally two types of lookups:
* Independent reads
* Dependent reads
Independent reads can be pipelined.
The first lookup “costs” ~150 clocks
® The second costs ~5 clocks.
Dependent reads must wait for previous results

® The first lookup costs ~150 clocks
® The second costs ~150 clocks.

® Try to have no more than 2-3 “levels” of dependent reads in a single
shader

L)

»

»

NVIDIA Corporation © 2013



Performance Impact <3

NVIDIA

® In this demo, Ptex costs < 30% versus no texturing at all
® Costs < 20% compared to repeat texturing.
® ~15% versus an UV-unwrapped mesh

NVIDIA Corporation © 2013



Putting it all together <

NVIDIA

F.(u, v) = ( .5, ©.5)

K R.(u, v) = ( 0.5, -0.5 )
U.(u, v) = ( 6.5, 1.5 )

L.(u, v) = ( 1.5, ©0.5)

DT‘ D.(u, v) = ( 6.5, -0.5 )

® In this situation, texture lookups in R, U, L and D will return the
border color (0O, 0, 0, 0)

® F lookup will return alpha of 1—so the weight will be exactly 1.

NVIDIA Corporation © 2013



Putting it all together >

NVIDIA

F.(u, v) = ( 1.0, 0.5)

Ly R.(u, v) = ( .5, 0.0 )
U.(u, v) = ( 0.0, 1.5 )

L.(u, v) = ( 2.0, 0.5)

DT‘ D.(u, v) = ( 0.0, -0.5 )

® In this situation, texture lookups in U, L and D will return the border color
(0,0, 0, 0)

* If R and F are the same resolution, they will each return an alpha of 0.5.

¢ If Rand F are not the same resolution, alpha will not be 1.0—renormalization
will be necessary.

NVIDIA Corporation © 2013



Questions? >

NVIDIA

® jmcdonald at nvidia dot com

Demo Thanks: Johnny Costello and Timothy Lottes!

NVIDIA Corporation © 2013



In the demo <

NVIDIA

)

Ptex

AA

Vignetting

Lighting

Spectral Simulation (7 data points)
Volumetric Caustics (128 taps per pixel)

0)

)

)

)

»

NVIDIA Corporation © 2013



