
Eliminating Texture

Waste: Borderless Ptex

John McDonald, NVIDIA

Corporation

NVIDIA Corporation © 2013

Memory Consumption

Modern games consume a lot

of memory

The largest class of memory

usage is textures

But lots of texture is wasted!

Waste costs both memory and

increased load times

Back/Front

Gbuffer

Textures

VB/IB

Simulation

NVIDIA Corporation © 2013

Wasted?!

Two sources of texture waste:

Unmapped texture storage (major)

Duplicated texels to help

alleviate visible seams (minor)

This cannot eliminate seams.

http://www.boogotti.com/root/images/face/dffuse_texture.jpg

Waste Waste

Waste

Waste

Waste

NVIDIA Corporation © 2013

Wasted?!

Two sources of texture waste:

Unmapped texture storage (major)

Duplicated texels to help

alleviate visible seams (minor)

This cannot eliminate seams.

http://www.boogotti.com/root/images/face/dffuse_texture.jpg

NVIDIA Corporation © 2013

How much waste are we talking?

Nearly 60% of memory usage in a modern game* is texture usage

And up to 30% of that is waste.

That’s 18% of your total application footprint.

NVIDIA Corporation © 2013

Memory Waste

18% of your memory is useless.

18% of your load time is wasted.

NVIDIA Corporation © 2013

Enter Ptex (a quick recap)

The soul of Ptex:

Model with Quads instead of Triangles

You’re doing this for your next-gen engine anyways, right?

Every Quad gets its own entire texture UV-space

UV orientation is implicit in surface

definition

No explicit UV parameterization

Resolution of each face is

independent of neighbors.

NVIDIA Corporation © 2013

Ptex (cont’d)

Invented by Brent Burley at Walt Disney Animation Studios

Used in every animated film at Disney since 2007

6 features and all shorts, plus everything in

production now and for the foreseeable

future

Used on ~100% of surfaces

Rapid adoption in DCC tools

Widespread usage throughout

the film industry

NVIDIA Corporation © 2013

Ptex benefits

No UV unwraps

Allow artists to work at any resolution they want

Perform an offline pass on assets to decide what to ship for each

platform based on capabilities

Ship a texture pack later for tail revenue

Reduce your load times. And your memory footprint. Improve

your visual fidelity.

Reduce the cost of production’s long pole—art.

NVIDIA Corporation © 2013

Demo

Demo is running on a Titan.

Sorry, it’s what we have at the show.

I’ve run on 430-680—perf scales linearly with Texture/FB.

Could run on any Dx11 capable GPU.

Could also run on Dx10 capable GPUs with small adaptations.

OpenGL 4—no vendor-specific extensions.

NVIDIA Corporation © 2013

Roadmap: Realtime Ptex v1

Load

Model

Render

Preprocess

Draw Time

Bucket

and

Sort

Generate

Mipmaps

Fill

Borders

Pack

Texture

Arrays

Reorder

Index

Buffer

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

NVIDIA Corporation © 2013

Roadmap: Realtime Ptex v2

Load

Model

Render

Preprocess

Draw Time

Pack

Texture

Arrays

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

NVIDIA Corporation © 2013

Realtime Ptex v2

Instead of copying texels into a border region, just go look at

them.

Use clamp to edge (border color), with a border color of (0,0,0,0)

This makes those lookups fast.

Also lets you know how close to the edge you are

We’ll need to transform our UVs into their UV space

And accumulate the results

Waste factor? 0*.

NVIDIA Corporation © 2013

Example Model

VB: …

IB:

NVIDIA Corporation © 2013

Load Model

Vertex Data

Any geometry arranged as a quad-based mesh

Example: Wavefront OBJ

Patch Texture

Power-of-two texture images

Adjacency Information

4 Neighbors of each quad patch

Easily load texture and adjacency with OSS library available from

http://ptex.us/

http://ptex.us/

NVIDIA Corporation © 2013

Texture Arrays

Like 3D / Volume Textures, except:

No filtering between 2D slices

Only X and Y decrease with mipmap level (Z doesn’t)

Z indexed by integer index, not [0,1]

E.g. (0.5, 0.5, 4) would be (0.5, 0.5) from the 5th slice

API Support

Direct3D 10+: Texture2DArray

OpenGL 3.0+: GL_TEXTURE_2D_ARRAY

NVIDIA Corporation © 2013

Arrays of Texture Arrays

Both GLSL and HLSL* support arrays of TextureArrays.

This allows for stupidly powerful abuse of texturing.

Texture2DArray albedo[32]; // D3D
uniform sampler2DArray albedo[32]; // OpenGL

* HLSL support requires a little codegen—but it’s entirely a compile-time exercise,

no runtime impact.

NVIDIA Corporation © 2013

Pack Texture Arrays

One Texture2DArray per top-mipmap level

Store with complete with mipmap chain

Don’t forget to set border color to black (with 0 alpha).

NVIDIA Corporation © 2013

Packed Arrays

Texture Array (TA) 0 TA 1 TA 2

Slice 0 Slice 1 Slice 2 Slice 0 Slice 0

NVIDIA Corporation © 2013

Pack Patch Constants

Create a constant-buffer indexed by

PrimitiveID. Each entry contains:

Your Array Index and Slice in the

Texture2DArrays

Your four neighbors across the edges

Each neighbor’s UV orientation

(Again, can be prepared at baking time)

If rendering too many primitives

to fit into a constant buffer,

you can use Structured Buffers / SSBO for storage.

struct PTexParameters {
 ushort usNgbrIndex[4];
 ushort usNgbrXform[4];
 ushort usTexIndex;
 ushort usTexSlice;
};

uniform ptxDiffuseUBO {
 PTexParameters ptxDiffuse[PRIMS];
};

NVIDIA Corporation © 2013

Rendering time (CPU)

Bind Texture2DArrays

(If you’re in GL, consider Bindless)

Select Shader

Setup Constants

NVIDIA Corporation © 2013

Rendering Time (DS)

In the domain shader, we need to generate our UVs.

Use SV_DomainLocation.

Exact mapping is dependent on

DCC tool used to generate

the mesh

Incorrect surface orientation

NVIDIA Corporation © 2013

Rendering Time (PS)

Conceptually, a ptex lookup is:

Sample our surface (use SV_PrimitiveID to determine our data).

For each neighbor:

Transform our UV into their UV space

Perform a lookup in that surface with transformed UVs

Accumulate the result, correct for base-level differences and return

NVIDIA Corporation © 2013

Mapping Space

There are 16 cases that

map our UV space to our

neighbors, as shown.

NVIDIA Corporation © 2013

Transforming Space

Conveniently these map

to simple 3x2 texture

transforms

NVIDIA Corporation © 2013

Bad seaming

All your base

Base level differences, wah?

When a 512x512 neighbors a 256x256, their base levels are

different.

This is an issue because samples are constant-sized in texel

(integer) space, not UV (float) space

NVIDIA Corporation © 2013

Renormalization

With unused alpha channel, code is simply:

return result / result.a;

If you need alpha, see appendix

Bad seaming Fixed!

NVIDIA Corporation © 2013

0% Waste?

Okay, not quite 0.

Need a global set of textures that match ptex resolutions used.
“Standard Candles”

But they are one-channel, and can be massively compressed (4 bits
per pixel)

<5 megs of overhead, regardless of texture footprint
For actual games, more like 1K of overhead.

Could be eliminated, but at the cost of some shader complexity.

Not needed for:
Textures without alpha

Textures used for Normal Maps

Textures less than 32 bytes per pixel

NVIDIA Corporation © 2013

A brief interlude on the expense of retrieving

texels from textured surfaces

Texture lookups by themselves are not expensive.

There are fundamentally two types of lookups:

Independent reads

Dependent reads

Independent reads can be pipelined.

The first lookup “costs” ~150 clocks

The second costs ~5 clocks.

Dependent reads must wait for previous results

The first lookup costs ~150 clocks

The second costs ~150 clocks.

Try to have no more than 2-3 “levels” of dependent reads in a single

shader

NVIDIA Corporation © 2013

Performance Impact

In this demo, Ptex costs < 30% versus no texturing at all

Costs < 20% compared to repeat texturing.

~15% versus an UV-unwrapped mesh

NVIDIA Corporation © 2013

Putting it all together

F

U

D

R L

F.(u, v) = (0.5, 0.5)

R.(u, v) = (0.5, -0.5)
U.(u, v) = (0.5, 1.5)
L.(u, v) = (1.5, 0.5)
D.(u, v) = (0.5, -0.5)

In this situation, texture lookups in R, U, L and D will return the

border color (0, 0, 0, 0)

F lookup will return alpha of 1—so the weight will be exactly 1.

NVIDIA Corporation © 2013

Putting it all together

F

U

D

R L

F.(u, v) = (1.0, 0.5)

R.(u, v) = (0.5, 0.0)
U.(u, v) = (0.0, 1.5)
L.(u, v) = (2.0, 0.5)
D.(u, v) = (0.0, -0.5)

In this situation, texture lookups in U, L and D will return the border color
(0, 0, 0, 0)

If R and F are the same resolution, they will each return an alpha of 0.5.

If R and F are not the same resolution, alpha will not be 1.0—renormalization
will be necessary.

NVIDIA Corporation © 2013

Questions?

jmcdonald at nvidia dot com

Demo Thanks: Johnny Costello and Timothy Lottes!

NVIDIA Corporation © 2013

In the demo

Ptex

AA

Vignetting

Lighting

Spectral Simulation (7 data points)

Volumetric Caustics (128 taps per pixel)

